Advertisement

Russian Journal of Organic Chemistry

, Volume 51, Issue 11, pp 1524–1531 | Cite as

Haloiminolactonization of cyclopentene α,α-dichlorocarboxamides. Tandem rearrangement of iminolactones in epoxylactones

  • Z. R. Valiullina
  • V. A. Akhmet’yanova
  • N. A. Ivanova
  • A. S. Erastov
  • E. S. Meshcheryakova
  • M. S. Miftakhov
Article
  • 56 Downloads

Abstract

Electrophilic cyclization initiated by NBS and I2 of 2,2-dichloro-2-[(1R,5S)- and 2,2-dichloro-2-[(1S,5R)-5-hydroxy-2-cyclopent-2-en-1-yl]-N-[(1R)-1-phenylethyl]acetamides was investigated. Stable under conditions of chromatography on SiO2 bicyclic iminoesters, (2Z,3aS,4S,6S,6aS)-6-bromo-3,3-dichloro- and (2Z,3aS,4S,6S,6aS)-3,3-dichloro-6-iodo-2-{[(1R)-1-phenylethyl]imino}hexahydro-2H-cyclopenta[b]furan-4-ols were isolated and characterized, and a possible version was suggested of their step-by-step recyclization transformations. The halocyclization of carboxamides in water-organic mixtures afforded bicyclic epoxylactones (1aR,2aS,5aS,5bS)- and (1aS,2aR,5aR,5bR)-5,5-dichlorohexahydro-4H-oxireno[3,4]cyclopenta-[1,2-b]furan-4-ones, whose reductive dechlorination proceeded stepwise with successive removal of Cl atoms and led to the formation of (1aR,2aS,5aS,5bS)- and (1aS,2aR,5aR,5bR)-hexahydro-4H-oxireno[3,4]cyclopenta-[1,2-b]furan-4-ones.

Keywords

Ethyl Acetate Petroleum Ether Phenylethyl Reductive Dechlorination Combine Organic Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Robin, S. and Rousseau, J., Tetrahedron, 1998, vol. 54, p. 13681.CrossRefGoogle Scholar
  2. 2.
    Snyder, S.A., Treitler, D.S., and Brucks, A.P., Aldrichim. Acta, 2011, vol. 44, p. 27.Google Scholar
  3. 3.
    Ma, Sh. and Xie, H., Tetrahedron, 2005, vol. 61, p. 251.CrossRefGoogle Scholar
  4. 4.
    Tang, Y., Lu, M., Liu, X., Feng, H., and Liu, L., Org. Lett., 2013, vol. 15, p. 1382.CrossRefGoogle Scholar
  5. 5.
    Schulte, A., Situ, X., Saite, S., and Wuensch, B., Chirality, 2014, vol. 26, p. 793.CrossRefGoogle Scholar
  6. 6.
    Vas’kevich, A.I., Tsizorik, N.M., Rusanov, E.B., Staninets, V.L., and Vovk, M.V., Russ. J. Org. Chem., 2012, vol. 48, p. 193.CrossRefGoogle Scholar
  7. 7.
    Baldwin, E., Chem. Commun., 1976, p. 734.Google Scholar
  8. 8.
    Kuklev, D.V. and Bezuglov, V.V., Bioorg. Khim., 1994, vol. 20, p. 341.Google Scholar
  9. 9.
    Snider, B.B. and Johnson, M.I., Tetrahedron Lett., 1985, vol. 26, p. 5497.CrossRefGoogle Scholar
  10. 10.
    Knapp, S. and Levorse, A.T., J. Org. Chem., 1988, vol. 53, p. 4006.CrossRefGoogle Scholar
  11. 11.
    Yeung, Y.Y. and Corey, E.J., Tetrahedron., 2007, vol. 48, p. 7567.CrossRefGoogle Scholar
  12. 12.
    Cheng, Ya., Zongrong, W., and Yeung, Y.Y., Org. Biomol. Chem., 2014, vol. 12, p. 2333.CrossRefGoogle Scholar
  13. 13.
    Castellanos, A. and Fletcher, S.P., Chem. Eur. J., 2011, vol. 17, p. 5766.CrossRefGoogle Scholar
  14. 14.
    Tan, C.K., Zhou, L., and Yeung, Y.-Y., Synlett., 2011, p. 1335.Google Scholar
  15. 15.
    Tan, C.K. and Yeung, Y.-Y., Chem. Commun., 2013, vol. 49, p. 7985.CrossRefGoogle Scholar
  16. 16.
    Angelin, M., Vongvival, P., Fischer, A., and Ramstrom, O., Chem. Commun., 2008, p. 768.Google Scholar
  17. 17.
    Connor, D.T. and Strandmann, M., J. Org. Chem., 1973, vol. 38, p. 3874.CrossRefGoogle Scholar
  18. 18.
    Magnus, P., Westwood, N., Spyvee, M., Frost, C., Linnane, P., Tavares, F., and Lunch, Y., Tetrahedron Lett., 1999, vol. 55, p. 6435.CrossRefGoogle Scholar
  19. 19.
    Gimazetdinov, A.M., Ivanova, N.A., and Miftakhov, M.S., Nat. Prod. Commun., 2013, vol. 8, p. 981.Google Scholar
  20. 20.
    Ferrier, R.J., Chem Rev., 1993, vol. 93, p. 2779.CrossRefGoogle Scholar
  21. 21.
    Donaldson, R.E., Saddler, J.C., Byrn, S., McKenzie, A.T., and Fuchs, P.L., J. Org. Chem., 1983, vol. 48, p. 2167.CrossRefGoogle Scholar
  22. 22.
    Moon, H.R., Choi, W.J., and Kim, H.O., Tetrahedron Asymmetry, 2002, vol. 13, p. 1189.CrossRefGoogle Scholar
  23. 23.
    Berecibar, A., Grandjean, C., and Siriwardena, A., Chem. Rev., 1999, vol. 99, p. 779.CrossRefGoogle Scholar
  24. 24.
    Corey, E.J. and Noyori, R., Tetrahedron Lett., 1970, vol. 95, p. 311.CrossRefGoogle Scholar
  25. 25.
    Patridge, J.J., Chadha, N.K., and Uskokovic, M.R., J. Am. Chem. Soc., 1973, vol. 95, p. 7171.CrossRefGoogle Scholar
  26. 26.
    Firrier, R.J. and Prasit, P., Chem. Commun., 1983, p. 983.Google Scholar
  27. 27.
    Tello-Aburto, R., Rios, M.Y., Swenson, D.C., and Olivo, H.F., Tetrahedron Lett., 2008, vol. 49, p. 6853.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Z. R. Valiullina
    • 1
  • V. A. Akhmet’yanova
    • 1
  • N. A. Ivanova
    • 1
  • A. S. Erastov
    • 1
  • E. S. Meshcheryakova
    • 2
  • M. S. Miftakhov
    • 1
  1. 1.Ufa Institute of ChemistryRussian Academy of SciencesUfa, BashkortostanRussia
  2. 2.Institute of Petrochemistry and CatalysisRussian Academy of SciencesUfa, BashkortostanRussia

Personalised recommendations