Advertisement

Russian Journal of Organic Chemistry

, Volume 51, Issue 9, pp 1253–1260 | Cite as

Stereoselective reduction of the ketone group in α-allyl β-keto esters

  • V. I. Boev
  • A. I. Moskalenko
  • S. L. Belopukhov
  • N. M. Przheval’skii
Review

Abstract

Stereoselective reduction of the ketone carbonyl group in α-allyl-substituted β-keto esters with sodium tetrahydridoborate in the presence of 2 equiv of MnCl2 quantitatively afforded the corresponding syn-isomeric alcohols. The reduction of the same substrates with L-selectride [LiBH(s-Bu)3] in anhydrous THF was characterized by low chemoselectivity, and anti-isomeric alcohols were formed in about 50% yield. Under analogous conditions, α-allyl ketones smoothly reacted with L-selectride to give syn-isomeric alcohols in quantitative yield. The corresponding anti isomers were synthesized by the Mitsunobu reaction of the syn isomers with formic acid, followed by alkaline hydrolysis.

Keywords

Ketone Group Mitsunobu Reaction Yellow Oily Substance Anti Isomer Ketone Carbonyl Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moskalenko, A.I. and Boev, V.I., Russ. J. Org. Chem., 2014, vol. 50, p. 54.CrossRefGoogle Scholar
  2. 2.
    Moskalenko, A.I. and Boev, V.I., Russ. J. Org. Chem., 2014, vol. 50, p. 1117.CrossRefGoogle Scholar
  3. 3.
    Moskalenko, A.I. and Boev, V.I., Russ. J. Gen. Chem., 2014, vol. 84, p. 1683.CrossRefGoogle Scholar
  4. 4.
    Miyazaki, H., Honda, K., Asami, M., and Inoue, S., J. Org. Chem., 1999, vol. 64, p. 9507.CrossRefGoogle Scholar
  5. 5.
    Yang, C.-G., Reich, N.W., Shi, Z., and He, C., Org. Lett., 2005, vol. 7, p. 4553.Google Scholar
  6. 6.
    Saha, P., Bhunia, A., and Saikia, A.K., Org. Biomol. Chem., 2012, vol. 10, p. 2470.CrossRefGoogle Scholar
  7. 7.
    Moskalenko, A.I. and Boev, V.I., Russ. J. Org. Chem., 2015, vol. 51, p. 167.CrossRefGoogle Scholar
  8. 8.
    Greeves, N., Comprehensive Organic Synthesis, Trost, B.M. and Fleming, I., Eds., Oxford: Pergamon, 1991, vol. 7, p. 1.CrossRefGoogle Scholar
  9. 9.
    Oishi, T. and Nakata, T., Acc. Chem. Res., 1984, vol. 17, p. 338.CrossRefGoogle Scholar
  10. 10.
    Canceill, J. and Jacques, J.J., Bull. Soc. Chem. Fr., 1970, p. 2180.Google Scholar
  11. 11.
    Nakata, T. and Oishi, T., Tetrahedron Lett., 1980, vol. 21, p. 1641.CrossRefGoogle Scholar
  12. 12.
    Ito, Y. and Yamaguchi, M., Tetrahedron Lett., 1983, vol. 24, p. 5385.CrossRefGoogle Scholar
  13. 13.
    Ito, Y., Katsuki, T., and Yamaguchi, M., Tetrahedron Lett., 1985, vol. 26, p. 4643.CrossRefGoogle Scholar
  14. 14.
    Fujita, M. and Hiyama, T., J. Am. Chem. Soc., 1984, vol. 106, p. 4629.CrossRefGoogle Scholar
  15. 15.
    Hiyama, T., Kobayashi, K., and Fujita, M., Tetrahedron Lett., 1984, vol. 25, p. 4959.CrossRefGoogle Scholar
  16. 16.
    Fujita, M. and Hiyama, T., J. Am. Chem. Soc., 1985, vol. 107, p. 8294.CrossRefGoogle Scholar
  17. 17.
    Fujita, M. and Hiyama, T., J. Org. Chem., 1988, vol. 53, p. 5405.CrossRefGoogle Scholar
  18. 18.
    Taniguchi, M., Fujii, H., Oshima, K., and Utimoto, K., Tetrahedron, 1993, vol. 49, p. 11 169.CrossRefGoogle Scholar
  19. 19.
    Sato, T., Nishio, M., and Otera, J., Synlett, 1995, p. 965.Google Scholar
  20. 20.
    Marcantoni, E., Alessandrini, S., Malavolta, M., Bartoli, G., Bellucci, M.C., and Sambri, L., J. Org. Chem., 1999, vol. 64, p. 1986.CrossRefGoogle Scholar
  21. 21.
    Dani, P., Karlen, T., Gossage, R.A., Gladiali, S., and van Koten, G., Angew. Chem., 2000, vol. 112, p. 759.CrossRefGoogle Scholar
  22. 22.
    Bac, J.W., Lee, Sh.., Jung, Y.J., Maing, C.O., and Yoon, C.M., Tetrahedron Lett., 2001, vol. 42, p. 2137.CrossRefGoogle Scholar
  23. 23.
    Lipshutz, B.H., Lower, A., and Noson, K., Org. Lett., 2002, vol. 4, p. 4045.Google Scholar
  24. 24.
    Lipshutz, B.H., Caires, C.C., Kuipers, P., and Chrisman, W., Org. Lett., 2003, vol. 5, p. 3085.Google Scholar
  25. 25.
    Sato, M., Gunji, Y., Ikeno, T., and Yamada, T., Synthesis, 2004, p. 1434.Google Scholar
  26. 26.
    Wu, X., Li, X., Hems, W., King, F., and Xiao, J., Org. Biomol. Chem., 2004, vol. 2, p. 1818.CrossRefGoogle Scholar
  27. 27.
    Ison, E.A., Trivedi, E.R., Corbin, R.A., and Abu–Omar, M.M., J. Am. Chem. Soc., 2005, vol. 127, p. 15 374.CrossRefGoogle Scholar
  28. 28.
    Onodera, G., Nishibayashi, Y., and Uemura, S., Angew. Chem., Int. Ed., 2006, vol. 45, p. 3819.CrossRefGoogle Scholar
  29. 29.
    Ibrahem, I. and Cordova, A., Angew. Chem., Int. Ed., 2006, vol. 45, p. 1952.CrossRefGoogle Scholar
  30. 30.
    Du, D.-M., Fang, T., Xu, J., and Zhang, S.-W., Org. Lett., 2006, vol. 8, p. 1327.Google Scholar
  31. 31.
    Matsumura, Y., Ogura, K., Kouchi, Y., Iwasaki, F., and Onomura, O., Org. Lett., 2006, vol. 8, p. 3789.Google Scholar
  32. 32.
    Casey, C.p. and Guan, H., J. Am. Chem. Soc., 2007, vol. 129, p. 5816.CrossRefGoogle Scholar
  33. 33.
    Xu, Q., Gu, X., Liu, S., Duo, Q., and Shi, M., J. Org. Chem., 2007, vol. 72, p. 2240.CrossRefGoogle Scholar
  34. 34.
    Bajwa, N. and Jennings, M.P., J. Org. Chem., 2008, vol. 73, p. 3638.CrossRefGoogle Scholar
  35. 35.
    Lee, C.-T. and Lipshutz, B.H., Org. Lett., 2008, vol. 10, p. 4187.CrossRefGoogle Scholar
  36. 36.
    Soltani, O., Ariger, M.A., Vazquez-Villa, H., and Carreira, E.M., Org. Lett., 2010, vol. 12, p. 2893.CrossRefGoogle Scholar
  37. 37.
    Albright, A. and Gawley, R.E., J. Am. Chem. Soc., 2011, vol. 133, p. 19 680.CrossRefGoogle Scholar
  38. 38.
    Ariger, M.A. and Carreira, E.M., Org. Lett., 2012, vol. 14, p. 4522.CrossRefGoogle Scholar
  39. 39.
    Goodman, C.G., Do, D.T., and Johnson, J.S., Org. Lett., 2013, vol. 15, p. 2446.CrossRefGoogle Scholar
  40. 40.
    Nakamura, K., Miyai, T., Nagar, A., Oka, S., and Ohno, A., Bull. Chem. Soc. Jpn., 1989, vol. 62, p. 1179.CrossRefGoogle Scholar
  41. 41.
    Servi, S., Synthesis, 1990, p. 1.Google Scholar
  42. 42.
    Jian-Xin, G. and Gno-Qiang, L., Tetrahedron, 1993, vol. 49, p. 5805.CrossRefGoogle Scholar
  43. 43.
    Shieh, W-R. and Sih, C.J., Tetrahedron: Asymmetry, 1993, vol. 4, p. 1259.CrossRefGoogle Scholar
  44. 44.
    Dauchet, S., Bigot, C., Buisson, D., and Azerad, R., Tetrahedron: Asymmetry, 1997, vol. 8, p. 1735.CrossRefGoogle Scholar
  45. 45.
    Yadav, J.S., Nanda, S., Reddy, P.T., and Rao, A.B., J. Org. Chem., 2002, vol. 67, p. 3900.CrossRefGoogle Scholar
  46. 46.
    Groeger, H., Hummel, W., Buchholz, S., Drauz, K., Nguyen, T.V., Rollmann, C., Huesken, H., and Abokitse, K., Org. Lett., 2003, vol. 5, p. 173.CrossRefGoogle Scholar
  47. 47.
    Zhu, D., Ankati, H., Mukherjee, C., Yang, Y., Biehl, E.R., and Hua, L., Org. Lett., 2007, vol. 9, p. 2561.CrossRefGoogle Scholar
  48. 48.
    Lacheretz, R., Pardo, D.G., and Cossy, J., Org. Lett., 2009, vol. 11, p. 1245.CrossRefGoogle Scholar
  49. 49.
    Bartoszewicz, R., Miecznikowska-Stolarczyk, W., and Oprzadek, B., Metody Redukcji Zwiazkow Organicznych [in Polish], Warszawa: Panstwowe Wydawnictwo Naukowe, 1956. Translated under the title Metody vosstanovleniya organicheskikh soedinenii, Moscow: Inostrannaya Literatura, 1960, p. 202.Google Scholar
  50. 50.
    Fujii, H., Oshima, K., and Utimoto, K., Tetrahedron Lett., 1991, vol. 32, p. 6147.CrossRefGoogle Scholar
  51. 51.
    Xia, Y., Chackalamannil, S., Greenlee, W.J., Jayne, C., Neustadt, B., Stamford, A., Vaccaro, H., Xu, X., Baker, H., O’Neill, K., Woods, M., Hawes, B., and Kowalski, T., Bioorg. Med. Chem. Lett., 2011, vol. 21, p. 3290.CrossRefGoogle Scholar
  52. 52.
    Mitch, Ch.., Quimby, S.J., Reel, J.K., and Whitesitt, C.A., Int. Patent Appl. no. WO 97 40 016, 1997.Google Scholar
  53. 53.
    Mitsunobu, O., Synthesis, 1981, p. 1.Google Scholar
  54. 54.
    Bose, F.K., Lai, B., Hoffman, W.A., and Manhas, M.S., Tetrahedron Lett., 1973, vol. 14, p. 1619.CrossRefGoogle Scholar
  55. 55.
    Boev, V.I., Moskalenko, A.I., Belopukhov, S.L., and Przheval’skii, N.M., Russ. J. Org. Chem., 2015, vol. 51, p. 493.CrossRefGoogle Scholar
  56. 56.
    Heathcock, Ch.., Buse, C.T., Kleschick, W.A., Pirrung, M.C., Sohn, J.E., and Lampe, J., J. Org. Chem., 1980, vol. 45, p. 1066.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. I. Boev
    • 1
  • A. I. Moskalenko
    • 1
  • S. L. Belopukhov
    • 1
  • N. M. Przheval’skii
    • 1
  1. 1.Timiryazev Moscow Agricultural Academy Russian State Agrarian UniversityMoscowRussia

Personalised recommendations