Russian Journal of Organic Chemistry

, Volume 51, Issue 5, pp 636–639 | Cite as

Bromination of 2-phenyl-1,2,3,4-tetrahydroquinolines

  • M. N. Zemtsova
  • S. V. Kulemina
  • V. B. Rybakov
  • Yu. N. Klimochkin


Bromination of 2-phenyltetrahydroquinolines derivatives was investigated. During the bromination of 2-phenyl-1,2,3,4-tetrahydroquinoline with bromine in chloroform or bromosuccinimide along with the formation of di- and tribrom derivatives the oxidation reaction occurs with the generation of quinoline structure. The interaction of 2-phenyl-1,2,3,4-tetrahydroquinoline with bromine in acetic acid leads to the formation of 6,8-dibromoderivative preserving the 1,2,3,4-tetrahydroquinoline ring. At the same time N-substituted 2-phenyl-1,2,3,4-tetrahydroquinoline is selectively brominated in various conditions with the formation of 6-monobromoderivative. By the method of X-ray diffraction analysis the molecular structure of 3,6,8-tribromo-2-phenylquinoline single crystals was determined.


Bromine Colorless Crystal Tetrachloromethane Sodium Chlorate Tetrahydroquinoline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sridharan, V., Suryavanshi, P.A., and Menéndez, J.C., Chem. Rev., 2011, vol. 111, p. 7157.CrossRefGoogle Scholar
  2. 2.
    Morimoto, Y., J. Heterocycl. Chem., 1998, vol. 35, p. 279.CrossRefGoogle Scholar
  3. 3.
    Witherup, K.M., Ransom, R.W., Graham, A.C., Bernard, A.M., Salvatore, M.J., Lumma, W.C., Andersen, P.S., Pitzenberger, S.M., and Varga, S.L., J. Am. Chem. Soc., 1995, vol. 117, p. 6682.CrossRefGoogle Scholar
  4. 4.
    Williamson, N.M., March, D.R., and Ward, A.D., Tetrahedron Lett., 1995, vol. 36, p. 7721.CrossRefGoogle Scholar
  5. 5.
    Perry, N.B., Blunt, J.W., and Munro, M.N.G., Tetrahedron, 1988, vol. 44, p. 1727.CrossRefGoogle Scholar
  6. 6.
    Katritzky, A.R., Rachwal, S., and Rachwal, B., Tetrahedron, 1996, vol. 52, p. 15031.CrossRefGoogle Scholar
  7. 7.
    Ueda, M., Kawai, S., Hayashi, M., Naito, T., and Miyata, O., J. Org. Chem., 2010, vol. 75, p. 914.CrossRefGoogle Scholar
  8. 8.
    Ahmed, N., Brahmbhatt, K.G., Sabde, S., Mitra, D., Singh, I.P., and Bhutani, K.K., Bioorg. Med. Chem., 2010, vol. 18, p. 2872.CrossRefGoogle Scholar
  9. 9.
    Ramesh, E., Manian, R.D.R.S., Raghunathan, R., Sainath, S., and Raghunathan, M., Bioorg. Med. Chem., 2009, vol. 17, p. 660.CrossRefGoogle Scholar
  10. 10.
    Balint, J., Egri, G., Fogassy, E., Bocskei, Z., Simon, K., Gajary, A., and Friesz, A., Tetrahedron: Asymm., 1999, vol. 10, p. 1079.CrossRefGoogle Scholar
  11. 11.
    Ikeda, S., Shibuya, M., and Iwabuchi, Y., Chem. Commun., 2007, p. 504.Google Scholar
  12. 12.
    Sahin, A., Cakmak, O., Demirtas, I., Okten, S., and Tutar, A., Tetrahedron., 2008, vol. 64, p. 10068.CrossRefGoogle Scholar
  13. 13.
    Zhuravleva, Yu.A., Zimichev, A.V., Zemtsova, M.N., and Klimochkin, Yu.N., Russ. J. Org. Chem., 2011, vol. 47, p. 306.CrossRefGoogle Scholar
  14. 14.
    Zhuravleva, Y.A., Zimichev, A.V., Zemtsova, M.N., Rybakov, V.B., and Klimochkin, Y.N., Acta Cryst., 2009, vol. E65, p. 2059.Google Scholar
  15. 15.
    Zhuravleva, Yu.A., Zimichev, A.V., Zemtsova, M.N., and Klimochkin, Yu.N., Russ. J. Org. Chem., 2008, vol. 44, p. 776.CrossRefGoogle Scholar
  16. 16.
    Zhuravleva, Yu.A., Zimichev, A.V., Zemtsova, M.N., and Klimochkin, Yu.N., Russ. J. Org. Chem., 2009, vol. 45, p. 609.CrossRefGoogle Scholar
  17. 17.
    Yu, J., Li, Z., and Su, W., Synth. Commun., 2013, vol. 43, p. 361.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • M. N. Zemtsova
    • 1
  • S. V. Kulemina
    • 1
  • V. B. Rybakov
    • 2
  • Yu. N. Klimochkin
    • 1
  1. 1.Samara State Technical UniversitySamaraRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations