Russian Journal of Organic Chemistry

, Volume 50, Issue 9, pp 1323–1334 | Cite as

Thermal, acid-catalyzed, and photolytic transformations of spirocyclic 3H-pyrazoles formed by reactions of methyl, phenyl, and p-tolyl phenylethynyl sulfones with 9-diazofluorene

  • V. A. Vasin
  • Yu. Yu. Masterova
  • V. V. Razin
  • N. V. Somov


Methyl, phenyl, and p-tolyl phenylethynyl sulfones react with 9-diazofluorene in diethyl ether at 20°C to give 1,3-dipolar cycloaddition products according to von Auwers’ rule, the corresponding spirocyclic 3H-pyrazoles. The spiro adducts undergo isomerization into 5-R-sulfonyl-3-phenylpyrazolo[1,5-f]phenanthridines on heating in boiling toluene for 2 h; heating of the same pyrazoles in boiling benzene, acetonitrile, or ethanol leads to mixtures of 5-R-sulfonyl-3-phenylpyrazolo[1,5-f]phenanthridines and 3-R-sulfonyl-3a-phenyl-3aH-dibenzo[e,g]indazoles, the latter prevailing. The indazoles are kinetically controlled thermolysis products which are quantitatively converted into phenanthridines on heating in toluene. Sulfonyl-substituted spirocyclic 3H-pyrazoles and indazoles in glacial acetic acid at 20°C in the presence of a catalytic amount of sulfuric acid are transformed into 3a-phenyl-2H-dibenzo[e,g]indazol-3(3aH)-one. Under analogous conditions, sulfonyl-substituted phenanhtridines give rise to 3-phenyl-1H-dibenzo[e,g]indazole. Photolysis of spirocyclic 3H-pyrazoles yields mixtures of sulfonylcyclopropenes and 2H-cyclopenta[j,k]fluorenes.


Pyrazole Thermolysis Methylsulfonyl Indazole Phenanthridines 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bastide, J. and Ytnri-Rousstau, O., The Chemistry of the Carbon-Carbon Triple Bond, Patai, S., Ed., Chichester: Wiley, 1978, part 1, chap. 11, p. 448.Google Scholar
  2. 2.
    Regitz, M. and Heydt, H., 1,3-Dipolar Cycloaddition Chemistry, Padwa, A., Ed., New York: Wiley, 1984, vol. 1, chap. 4, p. 394.Google Scholar
  3. 3.
    Sammes, M.P. and Katritzky, A.R., Adv. Heterocycl. Chem., 1983, vol. 34, p. 1.CrossRefGoogle Scholar
  4. 4.
    Maas, G., Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products, Padwa, A. and Pearson, W.H., Eds., New York: Wiley, 2002, chap. 8, p. 539.Google Scholar
  5. 5.
    Van Alphen, J., Recl. Trav. Chim. Pays-Bas, 1943, vol. 62, p. 491.CrossRefGoogle Scholar
  6. 6.
    Hüttel, R., Franke, K., Martin, H., and Riedl, J., Chem. Ber., 1960. vol. 93, p. 1433.CrossRefGoogle Scholar
  7. 7.
    Sammes, M.P. and Katritzky, A.R., Adv. Heterocycl. Chem., 1983, vol. 34, p. 53.CrossRefGoogle Scholar
  8. 8.
    Nagai, T. and Hamaguchi, M., Org. Prep. Proced. Int., 1993, vol. 25, p. 403.CrossRefGoogle Scholar
  9. 9.
    Back, T.G., Tetrahedron, 2001, vol. 57, p. 5263.CrossRefGoogle Scholar
  10. 10.
    Gao, D., Zhai, H., Parvez, M., and Back, T.G., J. Org. Chem., 2008, vol. 73, p. 8057.CrossRefGoogle Scholar
  11. 11.
    Back, T.G., Clary, K.N., and Gao, D., Chem. Rev., 2010, vol. 110, p. 4498.CrossRefGoogle Scholar
  12. 12.
    Guillerm, G., L’Honoré, A., Veniard, L., Pourcelot, G., and Benaim, J., Bull. Soc. Chim. Fr., 1973, p. 2739.Google Scholar
  13. 13.
    Padwa, A. and Wannamaker, M.W., Tetrahedron, 1990, vol. 46, p. 1145.CrossRefGoogle Scholar
  14. 14.
    Franck-Neumann, M. and Lohmann, J.-J., Angew. Chem., Int. Ed. Engl., 1977, vol. 16, p. 323.CrossRefGoogle Scholar
  15. 15.
    Padwa, A. and Wannamaker, M.W., Tetrahedron Lett., 1986, vol. 27, p. 2555.CrossRefGoogle Scholar
  16. 16.
    Padwa, A., Wannamaker, M.W., and Dyszlewski, A.D., J. Org. Chem., 1987, vol. 52, p. 4760.CrossRefGoogle Scholar
  17. 17.
    Padwa, A. and Wannamaker, M.W., Tetrahedron, 1991, vol. 47, p. 6139.CrossRefGoogle Scholar
  18. 18.
    Benati, L., Calestani, G., Nanni, D., Spagnolo, P., and Volta, M., Tetrahedron, 1997, vol. 53, p. 9269.CrossRefGoogle Scholar
  19. 19.
    Bourissou, D. and Bertrand, G., Tetrahedron Lett., 1999, vol. 40, p. 883.CrossRefGoogle Scholar
  20. 20.
    Dürr, N. and Sergio, R., Chem. Ber., 1974, vol. 107, p. 2027.CrossRefGoogle Scholar
  21. 21.
    Yen, Y., Chen, S.-F., Heng, Z.-C., Huang, J.-C., Kao, L.-C., Lai, C.-C., and Liu, R.S.H., Heterocycles, 2001, vol. 55, p. 1859.CrossRefGoogle Scholar
  22. 22.
    Mataka, S. and Tashiro, M., J. Org. Chem., 1981, vol. 46, p. 1929.CrossRefGoogle Scholar
  23. 23.
    Fedorov, A.A., Duisenbaev, Sh.E., Razin, V.V., Kuznetsov, M.A., and Linden, E., Russ. J. Org. Chem., 2007, vol. 43, p. 231.CrossRefGoogle Scholar
  24. 24.
    Dürr, H. and Schrader, L., Z. Naturforsch., Teil B, 1969, vol. 24, p. 536.Google Scholar
  25. 25.
    Jones, G.W., Chang, K.T., and Shechter, H., J. Am. Chem. Soc., 1979, vol. 101, p. 3906.CrossRefGoogle Scholar
  26. 26.
    Schiess, P. and Stalder, H., Tetrahedron Lett., 1980, vol. 21, p. 1413.CrossRefGoogle Scholar
  27. 27.
    Reimlinger, H., Chem. Ber., 1967, vol. 100, p. 3097.CrossRefGoogle Scholar
  28. 28.
    Silverstein, R.M., Webster, F.X., and Kiemle, D.J., Spectrometric Identification of Organic Compounds, Hoboken, NJ: Wiley, 2005, 7th ed.Google Scholar
  29. 29.
    Razin, V.V. and Gupalo, V.I., Zh. Org. Khim., 1974, vol. 10, p. 2342.Google Scholar
  30. 30.
    Baron, W.J., Hendrick, M.E., and Jones, M., J. Am. Chem. Soc., 1973, vol. 95, p. 6286.CrossRefGoogle Scholar
  31. 31.
    Razin, V.V., Zh. Org. Khim., 1975, vol. 11, p. 1457.Google Scholar
  32. 32.
    Leach, J.C.L. and Wilson, J.W., J. Org. Chem., 1978, vol. 43, p. 4880.CrossRefGoogle Scholar
  33. 33.
    Dürr, H. and Gleiter, R., Angew. Chem., 1978, vol. 90, p. 591.CrossRefGoogle Scholar
  34. 34.
    Burgert, W., Groâe, M., and Rewicki, D., Chem. Ber., 1982, vol. 115, p. 309.CrossRefGoogle Scholar
  35. 35.
    Ege, G., Tetrahedron Lett., 1963, vol. 4, p. 1667.CrossRefGoogle Scholar
  36. 36.
    Dürr, H., Fröhlich, S., Schley, B., and Weisgerber, H., J. Chem. Soc., Chem. Commun., 1977, p. 843.Google Scholar
  37. 37.
    CrysAlisPro, Agilent Technologies, Version (release 20-01-2012 CrysAlis171.NET).Google Scholar
  38. 38.
    Sheldrick, G.M., SHELXL97, SHELXS97, Göttingen, Germany: Univ. of Göttingen, 1997.Google Scholar
  39. 39.
    Farrugia, L.J., J. Appl. Crystallogr., 1999, vol. 32, p. 837.CrossRefGoogle Scholar
  40. 40.
    Truce, W.E. and Wolf, G.C., J. Org. Chem., 1971, vol. 36, p. 1727.CrossRefGoogle Scholar
  41. 41.
    Amiel, Y., J. Org. Chem., 1974, vol. 39, p. 3867.CrossRefGoogle Scholar
  42. 42.
    Friedrichsen, W., Schwarz, I., Epe, B., and Hesse, K.-F., Z. Naturforsch., Teil B, 1981, vol. 36, p. 622.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. A. Vasin
    • 1
  • Yu. Yu. Masterova
    • 1
  • V. V. Razin
    • 2
  • N. V. Somov
    • 3
  1. 1.Ogarev Mordovia State UniversitySaranskRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Lobachevsky State University of Nizhni NovgorodNizhni NovgorodRussia

Personalised recommendations