Russian Journal of Organic Chemistry

, Volume 50, Issue 5, pp 694–704 | Cite as

Supernucleophilic systems based on functionalized surfactants in the decomposition of 4-nitrophenyl esters derived from phosphorus and sulfur acids: II. Influence of the length of hydrophobic alkyl substituents on micellar effects of functionalized monomeric and dimeric imidazolium surfactants

  • I. V. Kapitanov
  • I. A. Belousova
  • A. E. Shumeiko
  • M. L. Kostrikin
  • T. M. Prokop’eva
  • A. F. Popov


New dimeric functionalized surfactants, 3,3′-[2-(hydroxyimino)propan-1,3-diyl]bis(1-alkyl-1H-imidazol-3-ium) dichlorides (Alk = C12H25, C14H29, C16H33), underlie the supernucleophilic microorganized systems capable of abnormally fast cleavage of acyl-containing substrates. Micellar effects both of monomeric and dimeric imidazolium surfactants in the cleavage processes of 4-nitrophenyl esters of diethylphosphonic, diethylphosphoric, and 4-toluenesulfonic acids are governed mostly by the hydrophobicity of the reaction components (acceleration ∼102–103 times). The unquestionable advantage of dimeric surfactants is their especially low critical micelle concentrations (≤10−5 mol L−1), providing a possibility to attain the same micellar effects at the surfactant concentration lower by an order of magnitude (and yet even lower) than in the case of monomeric analogs.


Surfactant Critical Micelle Concentration Observe Rate Constant Oximate Group Hydroxyimino 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kapitanov, I.V., Belousova, I.A., Shumeiko, A.E., Kostrikin, M.L., Prokop’eva, T.M., and Popov, A.F., Russ. J. Org. Chem., 2013, vol. 49, p. 1291.CrossRefGoogle Scholar
  2. 2.
    Yang, Y.Q., Zheng, L.S., Guo, X.D., Qian, Y., and Zhang, L.J., Biomacromolecules, 2011, vol. 12, p. 116; Chen, Y. and Dong, C.-M,. J. Phys. Chem. B., 2010, vol. 114, p. 7461; Han, J.K., Kim, M.S., Lee, D.S., Kim, Y.-S., Park, R.-W., Kim, K. and Kwon, I.C., Macromol. Res., 2009, vol. 17, p. 99; Mirgorodskaya, A.B., Yackevich, E.I., Syakaev, V.V., Zakharova, L.Ya., Latypov, S.K., and Konovalov, A.I., J. Chem. Eng. Data, 2012, vol. 57, p. 3153; Voronin, M.A., Gabdrakhmanov, D.R., Semenov, V.E., Valeeva, F.G., Mikhailov, A.S., Nizameev, I.R., Kadirov, M.K., Zakharova, L.Ya., Reznik, V.S., and Konovalov, A.I., ACS Appl. Mater. Interfaces, 2011, vol. 3, p. 402.CrossRefGoogle Scholar
  3. 3.
    Felber, A.E., Dufresne, M.-H., and Leroux, J.-C., Adv. Drug Deliv. Rev., 2012, vol. 64, p. 979; Savsunenko, O., Matondo, H., Franceschi-Messant, S., Perez, E., Popov, A.F., Rico-Lattes, I., Lattes, A., and Karpichev, Y., Langmuir, 2013, vol. 29, p. 3207.CrossRefGoogle Scholar
  4. 4.
    Popov, A.F., Pure Appl. Chem., 2008, vol. 80, p. 1381; Morales-Rojas, H. and Moss, R.A., Chem. Rev., 2002, vol. 102, p. 2497; Rico-Lattes, I., Perez, E., Franceschi-Messant, S., and Lattes, A., C. R. Chimie, 2011, vol. 14, p. 700.CrossRefGoogle Scholar
  5. 5.
    Handbook of Applied Surface and Colloid Chemistry, Holmberg, K., Ed., Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2001; Bunton, C.A., Adv. Coll. Int. Sci., 2006, vol. 123, p. 333.Google Scholar
  6. 6.
    Zakharova, L.Ya., Valeeva, F.G., Ibragimova, A.R., Voronin, M.A., Kudryavtseva, L.A., Syakaev, V.V., Kazakova, E.Kh., Morozova, Yu.E., Makarova, N.A., Mel’nikova, N.B., Zemnyakova, O.E., and Konovalov, A.I., Russ. Chem. Bull., 2008, vol. 57, p. 374; Zakharova, L.Ya., Valeeva, F.G., Ibragimova, A.R., Zakharov, A.V., Shtykov, S.N., Bogomolova, I.V., and Konovalov, A.I., Kinet. Catal., 2012, vol. 53, p. 344; Zubareva, T.M., Prokop’eva, T.M., Kapitanov, I.V., Belousova, I.A., Razumova, N.G., and Popov, A.F., Theoret. Exper. Chem., 2007, vol. 43, p. 247; Sadovskii, Yu.S., Solomoichenko, T.N., Turovskaya, M.K., Kapitanov, I.V., Piskunova, Zh.P., Kostrikin, M.L., Prokop’eva, T.M., and Popov, A.F., Theoret. Exper. Chem., 2012, vol. 48, p. 122; Gupta, B., Sharma, R., Singh, N., Karpichev, Y., Satnami, M.L., and Ghosh, K.K., J. Phys. Org. Chem., 2013, vol. 26, p. 632.CrossRefGoogle Scholar
  7. 7.
    Kar, G., Saikia, A.K., Bora, U., Dehury, S.K., and Chandhuri, M.K., Tetrahedron Lett., 2003, vol. 44, p. 4503; Karpichev, E.A., Prokop’eva, T.M., Turovskaya, M.K., Mikhailov, V.A., Kapitanov, I.V., Savelova, V.A., and Popov, A.F., Theoret. Exper. Chem., 2007, vol. 43, p. 241; Prokop’eva, T.M., Mikhailov, V.A., Turovskaya, M.K., Karpichev, E.A., Burakov, N.I., Savelova, V.A., Kapitanov, I.V., and Popov, A.F., Russ. J. Org. Chem., 2008, vol. 44, p. 637.CrossRefGoogle Scholar
  8. 8.
    Silva, M., Mello, R.S., Akhyar Farrukh, M., Venturini, J., Bunton, C.A., Milagre, H.M.S., Eberlin, N., Fiedler, H.D., and Nome, F., J. Org. Chem., 2009, vol. 74, p. 8254; Belousova, I.A., Kapitanov, I.V., Shumeiko, A.E., Mikhailov, V.A., Razumova, N.G., Proko’eva, T.M., and Popov, A.F., Theoret. Exper. Chem., 2008, vol. 44, p. 292; Tiwari, S., Ghosh, K.K., Marek, J., and Kuca, K., J. Phys. Org. Chem., 2010, vol. 23, p. 519; Singh, N., Karpichev, Y., Gupta, B., Satnami, M.L., Marek, J., Kuca, K., and Ghosh, K.K., J. Phys. Chem. B., 2013, vol. 117, p. 3806.CrossRefGoogle Scholar
  9. 9.
    Belousova, I.A., Kapitanov, I.V., Shumeiko, A.E., Turovskaya, M.K., Prokop’eva, T.M., and Popov, AF., Theoret. Exper. Chem., 2008, vol. 44, p. 93; Popov, A.F., Kapitanov, I.V., Orlov, M.A., Belousova, I.A., Tuchinskaya, K.K., and Prokop’eva, T.M., Theoret. Exper. Chem., 2010, vol. 46, p. 309; Kapitanov, I.V., Theoret. Exper. Chem., 2011, vol. 47, p. 317.CrossRefGoogle Scholar
  10. 10.
    Prokop’eva, T.M., Karpichev, E.A., Belousova, I.A., Turovskaya, M.K., Shumeiko, A.E., Kostrikin, M.L., Razumova, N.G., Kapitanov, I.V., and Popov, A.F., Theoret. Exper. Chem., 2010, vol. 46, p. 94; Kapitanov, I.V., Belousova, I.A., Turovskaya, M.K., Karpichev, E.A., Prokop’eva, T.M., and Popov, A.F., Russ. J. Org. Chem., 2012, vol. 48, p. 651.CrossRefGoogle Scholar
  11. 11.
    Prokop’eva, T.M., Simanenko, Yu.S., Suprun, I.P., Savelova, V.A., Zubareva, T.M., and Karpichev, E.A., Russ. J. Org. Chem., 2001, vol. 37, p. 655.CrossRefGoogle Scholar
  12. 12.
    Gemini Surfactant: Synthesis, Interfactial and Solution-phase Behavior, and Applications, Zana, R. and Xia, J., Eds., New York: Marcel Dekker, 2004.Google Scholar
  13. 13.
    Smith, M.B., March, J., March’s Advanced Organic Chemistry. Reactions, Mechanisms, and Structure, Hoboken, New Jersey: J. Wiley & Sons Ltd., 2007.Google Scholar
  14. 14.
    Pal, A., Datta, S., Aswal, V.K., and Bhattacharya, S., J. Phys. Chem. B., 2012, vol. 116, p. 13239.CrossRefGoogle Scholar
  15. 15.
    Belousova, I.A., Kapitanov, I.V., Shumeiko, A.E., Anikeev, A.V., Turovskaya, M.K., Zubareva, T.M., Panchenko, B.V., Prokop’eva, T.M., and Popov, A.F., Theoret. Exper. Chem., 2010, vol. 46, p. 225.CrossRefGoogle Scholar
  16. 16.
    Terrier, F., Rodriguez-Dafonte, P., Le Guevel, E., and Moutiers, G., Org. Biomol. Chem., 2006, vol. 4, p. 4352; Buncel, E., Um, I-H., and Terrier, F., The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids, Rappoport, Z. and Liebman, J.F., Eds., Chichester, West Sussex, England: J. Wiley & Sons Ltd., 2009, vol. 2, ch. 17, p. 818.CrossRefGoogle Scholar
  17. 17.
    Moutiers, G., Le Guevel, E., Cannes, C., Terrier, F., and Buncel, E., Eur. J. Org. Chem., 2001, p. 3279.Google Scholar
  18. 18.
    Kotoučova, H., Cibulka, R., Hampl, F., and Liška, F., J. Mol. Catal. A., 2001, vol. 174, p. 59; Kivala, M., Cibulka, R., and Hampl, F., Coll. Czech. Chem. Commun., 2006, vol. 71, p. 1642.CrossRefGoogle Scholar
  19. 19.
    Simanenko, Yu.S., Karpichev, E.A., Prokop’eva, T.M., Lattes, A., Popov, A.F., Savelova, V.A., and Belousova, I.A., Russ. J. Org. Chem., 2004, vol. 40, p. 206.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • I. V. Kapitanov
    • 1
  • I. A. Belousova
    • 1
  • A. E. Shumeiko
    • 1
  • M. L. Kostrikin
    • 1
  • T. M. Prokop’eva
    • 1
  • A. F. Popov
    • 1
  1. 1.Litvinenko Institute of Physical Organic and Coal ChemistryNational Academy of Sciences of UkraineDonetskUkraine

Personalised recommendations