Russian Journal of Organic Chemistry

, Volume 49, Issue 1, pp 28–33 | Cite as

Quantum-chemical study on thermal transformations of urea in ethylene glycol

  • A. Ya. Samuilov
  • A. R. Valeev
  • F. B. Balabanova
  • Ya. D. Samuilov
  • A. I. Konovalov
Article

Abstract

Thermal decomposition of urea in ethylene glycol with formation of isocyanic acid and ammonia was studied at the B3LYP/6-311++G(df,p) level of theory. The decomposition process is efficiently catalyzed by monomeric and dimeric forms of ethylene glycol. Ethylene glycol dimer formed via intermolecular hydrogen bonding is a stronger acid than the monomeric species, which is responsible for the higher catalytic activity of the former. Ethylene glycol associates efficiently catalyze addition of ammonium to isocyanic acid in the synthesis of ethylene carbonate.

Keywords

Dimer Versus Ethylene Carbonate HNCO Thermal Transformation Cyanic Acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bhanage, B.M., Fujita, S., Ikushima, Y., and Arai, M., Green Chem., 2003, vol. 5, p. 429.CrossRefGoogle Scholar
  2. 2.
    Li, Q., Zhang, W., Zhao, N., Wei, W., and Sun, Y., Catal. Today, 2006, vol. 115, p. 111.CrossRefGoogle Scholar
  3. 3.
    Tokmakov, I.V., Alavi, S., and Thompson, D.L., J. Phys. Chem. A, 2006, vol. 110, p. 2759.CrossRefGoogle Scholar
  4. 4.
    Tsipis, C.A. and Karipidis, P.A., J. Am. Chem. Soc., 2003, vol. 125, p. 2307.CrossRefGoogle Scholar
  5. 5.
    Liu, Y., Kemmer, A., Keim, K., Curdy, C., Peterson, H., and Kissel, T., Eur. J. Pharm. Biopharm., 2010, vol. 76, p. 222.CrossRefGoogle Scholar
  6. 6.
    Tomczyk, K.M., Parzuchowski, P.G., and Rokiki, G., J. Appl. Polym. Sci., 2011, vol. 120, p. 683.CrossRefGoogle Scholar
  7. 7.
    Zhang, X., Shi, Z., Fu, W., Liu, Z., Fang, Z., Lu, W., Wang, Y., and Chen, F., Appl. Surf. Sci., 2012, vol. 258, p. 2301.CrossRefGoogle Scholar
  8. 8.
    Hang, C.S., Wakclak, R., Finston, H., and Fried, V., J. Chem. Eng. Data, 1982, vol. 27, p. 146.CrossRefGoogle Scholar
  9. 9.
    Scrosati, B. and Garche, J., J. Power Sources, 2010, vol. 195, p. 2419.CrossRefGoogle Scholar
  10. 10.
    Clements, J.H., Ind. Eng. Chem. Res., 2003, 42, 663.CrossRefGoogle Scholar
  11. 11.
    Alexandrova, A.N. and Jorgensen, W.L., J. Phys. Chem. B, 2007, vol. 111, p. 720.CrossRefGoogle Scholar
  12. 12.
    Estiu, G. and Merz, K.M., J. Am. Chem. Soc., 2004, vol. 126, p. 6932.CrossRefGoogle Scholar
  13. 13.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., AlLaham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., Gaussian 03, Revision B.04, Wallingford CT: Gaussian, 2004.Google Scholar
  14. 14.
    Foresman, J.B. and Frisch, A.E., Exploring Chemistry with Electronic Structure Methods, Pittsburgh: Gaussian, 1998.Google Scholar
  15. 15.
    Godfrey, P.D., Brown, R.D., and Hunter, A.N., J. Mol. Struct., 1977, vols. 413–414, p. 405.Google Scholar
  16. 16.
    Kuchitsu, K., Guillor, J.P., and Bartell, L.S., J. Chem. Phys., 1968, vol. 49, p. 2488.CrossRefGoogle Scholar
  17. 17.
    Yamada, K., J. Mol. Spectrosc., 1980, vol. 79, p. 323.CrossRefGoogle Scholar
  18. 18.
    Kazerouni, M.R., Hedberg, L., and Hedberg, K., J. Am. Chem. Soc., 1997, vol. 119, p. 8324.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. Ya. Samuilov
    • 1
  • A. R. Valeev
    • 1
  • F. B. Balabanova
    • 1
  • Ya. D. Samuilov
    • 1
  • A. I. Konovalov
    • 2
  1. 1.Kazan National Research Technological UniversityKazanTatarstan, Russia
  2. 2.Arbuzov Institute of Organic and Physical Chemistry, Kazan Research CenterRussian Academy of SciencesKazanTatarstan, Russia

Personalised recommendations