Advertisement

Russian Journal of Organic Chemistry

, Volume 48, Issue 8, pp 1007–1040 | Cite as

Adamantane functionalization. synthesis of polyfunctional derivatives with various substituents in bridgehead positions

Article

Abstract

Published data on the methods of the synthesis of polyfunctional adamantane derivatives with various substituents at the tertiary carbon atoms of the adamantane framework are generalized and analyzed.

Keywords

Adamantane Saxagliptin COOH COOH Adamantane Derivative Adamantane Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mansoori, G.A., Adv. Chem. Phys., 2007, vol. 136, p. 207.CrossRefGoogle Scholar
  2. 2.
    Weidenhoffer, Z. and Hala, S., Sbornik Vys. Skoly Chem.-Techn. Praze D 22: Technology of Fuel, 1971, p. 7.Google Scholar
  3. 3.
    Fort, R.C., Adamantane. The Chemistry of Diamond Molecules, New York: Marcel Dekker, 1976, p. 385.Google Scholar
  4. 4.
    Moiseev, I.K., Makarova, N.V., and Zemtsova, M.N., Usp. Khim., 1999, vol. 68, p. 1102.CrossRefGoogle Scholar
  5. 5.
    Fokin, A.A. and Schreiner, P.R., Adv. Synth. Catal., 2003, vol. 345, p. 1035.CrossRefGoogle Scholar
  6. 6.
    Fokin, A.A., Shubina, T.E., Gunchenko, P.V., Isaev, S.D., Yurchenko, A.G., and Schreiner, P.R., J. Am. Chem. Soc., 2002, vol. 124, p. 10718.CrossRefGoogle Scholar
  7. 7.
    Olah, G.A., Hartz, N., Rasul, G., and Prakash, G.K.S., J. Am. Chem. Soc., 1995, vol. 117, p. 1336.CrossRefGoogle Scholar
  8. 8.
    Schreiner, P.R., Schleyer, P.v.R., and Scaefer, H.F., J. Am. Chem. Soc., 1993, vol. 115, p. 9659.CrossRefGoogle Scholar
  9. 9.
    Butenko, L.N., Derbisher, V.E., Khardin, A.P., and Shreibert, A.I., Zh. Org. Khim., 1973, vol. 9, p. 728.Google Scholar
  10. 10.
    Butenko, L.N., Protopopov, P.A., Derbisher, V.E., and Khardin, A.P., Synth. Commun., 1984, vol. 14, p. 113.CrossRefGoogle Scholar
  11. 11.
    Novikov, S.S., Khardin, A.P., Butenko, L.N., Novakov, I.A., and Radchenko, S.S., Izv. Akad. Nauk SSSR, Ser. Khim., 1976, vol. 25, p. 2597.Google Scholar
  12. 12.
    Novikov, S.S., Khardin, A.P., Butenko, L.N., Kulev, I.A., Novakov, I.A., Radchenko, S.S., and Burdenko, S.S., Zh. Org. Khim., 1980, vol. 16, p. 1433.Google Scholar
  13. 13.
    Wanka, L., Cabrele, C., Vanejews, M., and Schreiner, P.R., Eur. J. Org. Chem., 2007, p. 1474.Google Scholar
  14. 14.
    Lavrova, L.N., Indulen, M.K., Ryazantseva, G.M., Korytnyi, V.S., and Yashunskii, V.G., Khim.-Farm. Zh., 1990, vol. 24, p. 29.Google Scholar
  15. 15.
    Novakov, I.A., Petrov, V.I., Orlinson, B.S., Grigor’ev, I.A., Ozerov, O.A., and Kuznechikov, O.A., Khim.-Farm. Zh., 1996, vol. 30, p. 22.Google Scholar
  16. 16.
    Godfrey, J.D., Fox, R.T., Buono, F.G., Gougoutas, J.Z., and Malley, M.F., J. Org. Chem., 2006, vol. 71, p. 8647.CrossRefGoogle Scholar
  17. 17.
    Moiseev, I.K., Shiryaev, A.K., Klimochkin, Yu.N., and Matveev, A.I., Zh. Org. Khim., 1988, vol. 24, p. 1410.Google Scholar
  18. 18.
    Moiseev, I.K., Belyaev, P.G., Barabanova, N.V., Bardyug, O.P., Vishnevskii, E.N., Novatskaya, N.I., Golod, E.L., and Gidaspov, B.V., Zh. Org. Khim., 1975, vol. 11, p. 214.Google Scholar
  19. 19.
    Moiseev, I.K., Klimochkin, Yu.N., Zemtsova, M.N., and Trakhtenberg, P.L., Zh. Org. Khim., 1984, vol. 20, p. 1435.Google Scholar
  20. 20.
    Kovalev, V.V., Knyazeva, I.V., and Shokova, E.A., Vestn. MGU, Ser. 2m Khim., 1988, vol. 29, p. 511.Google Scholar
  21. 21.
    Stepanov, F.N., Isaev, S.D., and Vasil’eva, Z.P., Zh. Org. Khim., 1970, vol. 6, p. 51.Google Scholar
  22. 22.
    Kovalev, V.V., Fedorova, O.A., and Shokova, E.A., Zh. Org. Khim., 1987, vol. 23, p. 1882.Google Scholar
  23. 23.
    Shmailov, A., Alimbarova, L., Shokova, E., Tafeenko, V., Vatsouro, I., and Kovalev, V., Tetrahedron, 2010, vol. 66, p. 3058.CrossRefGoogle Scholar
  24. 24.
    Kovalev, V.V. and Shokova, E.A., Zh. Org. Khim., 1988, vol. 24, p. 738.Google Scholar
  25. 25.
    Stetter, H., Schwarz, M., and Hirschhorn, A., Chem. Ber., 1959, vol. 92, p. 1629.CrossRefGoogle Scholar
  26. 26.
    Bott, K., Chem. Ber., 1968, vol. 101, p. 564.CrossRefGoogle Scholar
  27. 27.
    Stepanov, F.N., Dikolenko, E.I., and Danilenko, G.I., Zh. Org. Khim., 1966, vol. 2, p. 640.Google Scholar
  28. 28.
    Fisher, W., Grob, C.F., and Katayama, H., Helv. Shim. Acta, 1976, vol. 59, p. 1953.CrossRefGoogle Scholar
  29. 29.
    Manchand, P.S., Cerruti, R.L., Martin, J.A., Hill, C.H., Merrett, J.H., Keech, E., Belshe, R.B., Connell, E.V., and Sim, I.S., J. Med. Chem., 1990, vol. 33, p. 1992.CrossRefGoogle Scholar
  30. 30.
    Krasutskii, P.A., Semenova, I.G., Novikova, M.I., Yurchenko, A.G., Tikhonov, V.P., Belikov, V.M., and Belokon’, Yu.N., Zh. Org. Khim., 1985, vol. 21, p. 1458.Google Scholar
  31. 31.
    Stetter, H. and Mayer, J., Chem. Ber., 1962, vol. 95, p. 667.CrossRefGoogle Scholar
  32. 32.
    Baklan, V.F., Khil’chevskii, A.N., Sologub, P.S., and Kukhar’, V.P., Zh. Org. Khim., 1992, vol. 28, p. 2098.Google Scholar
  33. 33.
    Khil’chevskii, A.N., Baklan, V.F., and Kukhar’, V.P., Zh. Org. Khim., 1996, vol. 32, p. 1022.Google Scholar
  34. 34.
    Maison, W., Frangioni, J.V., and Pannier, N., Org. Lett., 2004, vol. 6, p. 4567.CrossRefGoogle Scholar
  35. 35.
    Aleksandrov, A.M., Danilenko, G.I., Konovalov, E.V., Krasnoshchek, A.P., and Medvedeva, T.P., Zh. Org. Khim., 1974, vol. 10, p. 1548.Google Scholar
  36. 36.
    Sorochinskii, A.E., Aleksandrov, A.M., Kukhar’, V.P., Gamaleya, V.F., and Krasnoshchek, A.P., Zh. Org. Khim., 1979, vol. 15, p. 2480.Google Scholar
  37. 37.
    Barton, D.H.R., Hesse, R.H., Markwell, R.E., Pechet, M.M., and Toh, H.T., J. Am. Chem. Soc., 1976, vol. 98, p. 3034.CrossRefGoogle Scholar
  38. 38.
    Hara, S. and Aoyama, M., Synthesis, 2008, p. 2510.Google Scholar
  39. 39.
    Murray, R.W. and Gu, H., J. Org. Chem., 1995, vol. 60, p. 5673.CrossRefGoogle Scholar
  40. 40.
    Sorochinsky, A.E., Petrenko, A.A., Soloshonok, V.A., and Resnati, G., Tetrahedron, 1997, vol. 53, p. 5995.CrossRefGoogle Scholar
  41. 41.
    Petrov, V.A. and Resnati, G., Chem. Rev., 1996, vol. 96, p. 1809.CrossRefGoogle Scholar
  42. 42.
    Jasys, V.J., Lombardo, F., Appleton, T.A., Bordner, J., Ziliox, M., and Volkmann, R.A., J. Am. Chem. Soc., 2000, vol. 122, p. 466.CrossRefGoogle Scholar
  43. 43.
    Kolocouris, A., Hansen, R.K., and Broadhurst, R.W., J. Med. Chem., 2004, vol. 47, p. 4975.CrossRefGoogle Scholar
  44. 44.
    Anderson, G., Burks, W., and Harruna, J., Synth. Commun., 1988, vol. 18, p. 1967.CrossRefGoogle Scholar
  45. 45.
    Augeri, D.J., Robl, J.A., Betebenner, D.A., Magnin, D.R., Khanna, A., Robertson, J.G., Wang, A., Simpkins, L.M., Taunk, P., Huang, Q., Han, S.-P., Abboa-Offei, B., Cap, M., Xin, L., Tao, L., Tozzo, E., Welzel, G.E., Egan, D.M., Marcinkeviciene, J., Chang, S.Y., Biller, S.A., Kirby, M.S., Parker, R.A., and Hamann, L.G., J. Med. Chem., 2005, vol. 48, p. 5025.CrossRefGoogle Scholar
  46. 46.
    McNeill, E. and Du Bois, J., J. Am. Chem. Soc., 2010, vol. 132, p. 10202.CrossRefGoogle Scholar
  47. 47.
    Khusnutdinov, R.I., Shchadneva, N.A., Mukhametshina, L.F., and Dzhemilev, U.M., Zh. Org. Khim., 2009, vol. 45, p. 1152.Google Scholar
  48. 48.
    Nair, V., Suja, T.D., and Mohanan, K., Tetrahedron Lett., 2005, vol. 46, p. 3217.CrossRefGoogle Scholar
  49. 49.
    Schreiner, P.R., Lauenstein, O., Kolomitsyn, I.V., Nadi, S., and Fokin, A.A., Angew. Chem., Int. Ed., 1998, vol. 37, p. 1895.CrossRefGoogle Scholar
  50. 50.
    Schreiner, P.R., Lauenstein, O., Butova, E.D., Gunchenko, P.A., Kolomitsin, I.V., Wittkopp, A., Feder, G., and Fokin A.A., Chem. Eur. J., 2001, vol. 7, p. 4496.Google Scholar
  51. 51.
    Schreiner, P.R., Fokin, A.A., Lauenstein, O., Okamoto, Y., Wakita, T., Rinderspacher, C., Robinson, G.H., Vohs, J.K., and Campana, C.F., J. Am. Chem. Soc., 2002, vol. 124, p. 13348.CrossRefGoogle Scholar
  52. 52.
    Nasr, K., Pannier, N., Frangioni, J.V., and Maison, W., J. Org. Chem., 2008, vol. 73, p. 1056.CrossRefGoogle Scholar
  53. 53.
    Bashir-Hashemi, A., Gelber, N., and Li, J., Tetrahedron Lett., 1995, vol. 36, p. 1233.CrossRefGoogle Scholar
  54. 54.
    Kitagawa, T., Idomoto, Y., Matsubara, H., Hobara, D., Kakiuchi, T., Okazaki, T., and Komatsu, K., J. Org. Chem., 2006, vol. 71, p. 1362.CrossRefGoogle Scholar
  55. 55.
    Vishnevskii, E.N., Kuz’min, V.S., and Golod, E.L., Zh. Org. Khim., 1996, vol. 32, p. 1030.Google Scholar
  56. 56.
    Miura, T., Shibata, K., Sawaya, T., and Kimura, M., Chem. Phleg. Bull., 1982, vol. 30, p. 67.CrossRefGoogle Scholar
  57. 57.
    Kollonitsch, J., Barash, L., and Doldouras, G.A., J. Am. Chem. Soc., 1970, vol. 92, p. 7494.CrossRefGoogle Scholar
  58. 58.
    Ishii, Y., Matsunaka, K., and Sakaguchi, S., J. Am. Chem. Soc., 2000, vol. 122, p. 7390.CrossRefGoogle Scholar
  59. 59.
    Koch, V.R. and Miller, L.L., Tetrahedron Lett., 1973, vol. 14, p. 693.CrossRefGoogle Scholar
  60. 60.
    Aoyama, M., Fukuhara, T., and Hara, S., J. Org. Chem., 2008, vol. 73, p. 4186.CrossRefGoogle Scholar
  61. 61.
    Aoyama, M. and Hara, S., Tetrahedron, 2009, vol. 65, p. 3682.CrossRefGoogle Scholar
  62. 62.
    Galoppini, E., Coord. Chem. Rev., 2004, vol. 248, p. 1283.CrossRefGoogle Scholar
  63. 63.
    Galoppini, E., Guo, W., Zhang, W., Hoertz, P.G., Qu, P., and Meyer, G.J., J. Am. Chem. Soc., 2002, vol. 124, p. 7801.CrossRefGoogle Scholar
  64. 64.
    Thyagarajan, S., Liu, A., Famoyin, O.A., Lamberto, M., and Galoppini, E., Tetrahedron, 2007, vol. 63, p. 7550.CrossRefGoogle Scholar
  65. 65.
    Kamat, P.V., J. Phys. Chem. C, 2007, vol. 111, p. 2834.CrossRefGoogle Scholar
  66. 66.
    Kalyanasundaram, K. and Gratzel, M., Coord. Chem. Rev., 1998, vol. 177, p. 347.CrossRefGoogle Scholar
  67. 67.
    Guo, W., Galoppini, E., Rydja, G., and Pardi, G., Tetrahedron Lett., 2000, vol. 41, p. 7419.CrossRefGoogle Scholar
  68. 68.
    Galoppini, E., Guo, W., Qu, P., and Meyer, G.J., J. Am. Chem. Soc., 2001, vol. 123, p. 4342.CrossRefGoogle Scholar
  69. 69.
    Piotrowiak, P., Galoppini, E., Wei, Q., Meyer, G.J., and Wiewior, P., J. Am. Chem. Soc., 2003, vol. 125, p. 5278.CrossRefGoogle Scholar
  70. 70.
    Wei, Q. and Galoppini, E., Tetrahedron, 2004, vol. 60, p. 8497.CrossRefGoogle Scholar
  71. 71.
    Lamberto, M., Pagba, C., Piotrowiak, P., and Galoppini, E., Tetrahedron Lett., 2005, vol. 46, p. 4895.CrossRefGoogle Scholar
  72. 72.
    Lee, C.H., Zhang, Y., Romayanantakit, A., and Galoppini, E., Tetrahedron, 2010, vol. 66, p. 3897.CrossRefGoogle Scholar
  73. 73.
    Reichert, V.R. and Mathias, L.J., Macromolecules, 1994, vol. 27, p. 7015.CrossRefGoogle Scholar
  74. 74.
    Stany, P.J. and Diederich, F., Metall-Catalyzed Cross-Coupling Reactions, Weinheim: Wiley-VCH, 1998.Google Scholar
  75. 75.
    Sonogashira, K., Comprehensive Organic Synthesis, Trost, D.M., Ed., Oxford: Pergamon, 1991, vol. 3, p. 551.CrossRefGoogle Scholar
  76. 76.
    Miyaura, N. and Suzuki, A., Chem. Rev., 1995, vol. 95, p. 2457.CrossRefGoogle Scholar
  77. 77.
    Zarwell, S., Dietrich, S., Schulz, C., Dietrich, P., Michalik, F., and R’ck-Braun, K., Eur. J. Org. Chem., 2009, p. 2088.Google Scholar
  78. 78.
    Otto, B. and Ruck-Braun, K., Eur. J. Org. Chem., 2003, p. 2409.Google Scholar
  79. 79.
    Li, Q., Rukavishnikov, A.V., Petukhov, P.A., Zaikova, T.O., Jin, C., and Keana, J.F.W., J. Org. Chem., 2003, vol. 68, p. 4862.CrossRefGoogle Scholar
  80. 80.
    Takamatsu, D., Yamakoshi, Y., and Fukui, ken-ichi, J. Phys. Chem. B, 2006, vol. 110, p. 1968.CrossRefGoogle Scholar
  81. 81.
    Zarwell, S. and Ruck-Braun, K., Tetrahedron Lett., 2008, vol. 49, p. 4020.CrossRefGoogle Scholar
  82. 82.
    Drew, M.C., Chworos, A., Oroudjev, E., Hansma, H., and Yamakoshi, Y., Langmuir, 2010, vol. 26, p. 7117.CrossRefGoogle Scholar
  83. 83.
    Takamatsu, D., Fukui, K.-i., Aroua, S., and Yamakoshi, Y., Org. Biomol. Chem., 2010, vol. 8, p. 3655.CrossRefGoogle Scholar
  84. 84.
    Balzani, V., Venturi, M., and Credi, A., Molecular Devices and Machines, Weinheim: Wiley-VCH, 2003.CrossRefGoogle Scholar
  85. 85.
    Yao, Y. and Tour, J.M., J. Org. Chem., 1999, vol. 64, p. 1968.CrossRefGoogle Scholar
  86. 86.
    Deng, X. and Cai, C., Tetrahedron Lett., 2003, vol. 44, p. 815.CrossRefGoogle Scholar
  87. 87.
    Li, Q., Rukavishnikov, A.V., Petukhov, P.A., Zaikova, T.O., and Keana, J.F.W., Org. Lett., 2002, vol. 4, p. 3631.CrossRefGoogle Scholar
  88. 88.
    Li, Q., Jin, C., Petukhov, P.A., Rukavishnikov, A.V., Zaikova, T.O., Phadke, A., la, Munyon, D.Y., Lee, M.D., and Keana, J.F.W., J. Org. Chem., 2004, vol. 69, p. 1010.CrossRefGoogle Scholar
  89. 89.
    Hinterdorfer, P. and Dufrkne, Y.F., Nature Methods, 2006, vol. 3, p. 347.CrossRefGoogle Scholar
  90. 90.
    Lee, S.U., Mizuseki, H., and Kawazoe, Y., Phys. Chem. Chem. Phys., 2010, vol. 12, p. 11763.CrossRefGoogle Scholar
  91. 91.
    Oganesyan, A., Cruz, I.A., Amador, R.B., Sorto, N.A., Lozano, J., Godinez, C.E., Anguiano, J., Pace, H., Sabih, G., and Gutierrez, C.G., Org. Lett., 2007, vol. 9, p. 4967.CrossRefGoogle Scholar
  92. 92.
    Geall, A.J. and Blagbrough, I.S., Tetrahedron, 2000, vol. 56, p. 2449.CrossRefGoogle Scholar
  93. 93.
    Castro, B., Donmoy, T.R., Evin, G., and Selve, O., Tetrahedron Lett., 1975, vol. 16, p. 1219.CrossRefGoogle Scholar
  94. 94.
    Schwertfeger, H., Wurtele, C., Serafin, M., Hausmann, H., Carlson, R.M.K., Dahl, J.E.P., and Schreiner, P.R., J. Org. Chem., 2008, vol. 73, p. 7789.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations