Russian Journal of Organic Chemistry

, Volume 46, Issue 10, pp 1452–1460 | Cite as

Quantum-Chemical Study on Reactions of Isocyanates with Linear Methanol Associates: III.* Reaction of Methyl Isocyanate with Linear Methanol Associates

  • A. Ya. Samuilov
  • F. B. Balabanova
  • T. A. Kamalov
  • Ya. D. Samuilov
  • A. I. Konovalov


Addition of linear methanol associates at the C=N and C=O bonds of methyl isocyanate was studied in terms of the B3LYP/6-311++G(df,p) hybrid quantum-chemical method. The addition at the C=N bond is more favorable than the reaction at the carbonyl group. All reactions involve late asymmetric cyclic transition states. The activity of the reacting system increases in parallel with the degree of methanol association. Isomerization of methyl hydrogen methylcarbonimidate into carbamate is catalyzed by methanol associates. Thermal decomposition of carbamates with formation of isocyanates can occur in autocatalytic mode.


Isocyanate Carbamate Phenyl Isocyanate Prereaction Complex Methyl Methyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Samuilov, A.Ya., Zenitova, L.A., Samuilov, Ya.D., and Konovalov, A.I., Russ. J. Org. Chem., 2009, vol. 45, p. 68.CrossRefGoogle Scholar
  2. 2.
    Samuilov, A.Ya., Zenitova, L.A., Samuilov, Ya.D., and Konovalov, A.I., Russ. J. Org. Chem., 2008, vol. 44, p. 1316.CrossRefGoogle Scholar
  3. 3.
    Samuilov, A.Ya., Zenitova, L.A., Samuilov, Ya.D., and Konovalov, A.I., Zh. Fiz. Khim., 2008, vol. 82, p. 2224.Google Scholar
  4. 4.
    Lee, S. and Randall, D., The Polyurethane Book, New York, Wiley, 2003.Google Scholar
  5. 5.
    Clemitson, I., Castable Polyurethane Elastomers, Boca Raton: CRC, 2008.CrossRefGoogle Scholar
  6. 6.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al- Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., Gaussian 03, Revision C.02, Wallingford CT: Gaussian, 2004.Google Scholar
  7. 7.
    Foresman, J.B. and Frisch, A.E., Exploring Chemistry with Electronic Structure Methods, Pittsburgh: Gaussian, 1998.Google Scholar
  8. 8.
    Laikov, D.N., Chem. Phys. Lett., 1997, vol. 281, p. 151.CrossRefGoogle Scholar
  9. 9.
    Laikov, D.N., Chem. Phys. Lett., 2005, vol. 416, p. 116.CrossRefGoogle Scholar
  10. 10.
    Wang, Y., Zhao, X., Li, F., Wang, S., and Zhang, J., J. Chem. Technol. Biotechnol., 2001, vol. 76, p. 857.CrossRefGoogle Scholar
  11. 11.
    Zhao, X., Wang, Y., Wang, S., Yang., H., and Zhang, J., Ind. Eng. Chem. Res., 2002, vol. 41, no. 21, p. 5139.CrossRefGoogle Scholar
  12. 12.
    Dai, Y., Wang, Y., Yao, Q., Liu, L., Chu, W., and Wang, G., Catal. Lett., 2008, vol. 123, p. 307.CrossRefGoogle Scholar
  13. 13.
    Wang, C.R., Wanf, Y.J., and Zhao, X.Q., Chem. Eng. Technol., 2005, vol. 28, p. 1511.CrossRefGoogle Scholar
  14. 14.
    Distaso, M. and Quaranta, E., J. Catal., 2008, vol. 253, p. 278.CrossRefGoogle Scholar
  15. 15.
    Cavafa, M. and Quaranta, E., Mini-Rev. Org. Chem., 2009, vol. 6, p. 163.Google Scholar
  16. 16.
    Ono, Y., Pure Appl. Chem., 1996, vol. 68, p. 367.CrossRefGoogle Scholar
  17. 17.
    Tundo, P., Pure Appl. Chem., 2001, vol. 73, p. 1117.CrossRefGoogle Scholar
  18. 18.
    Sakakura, T., Choi, J.-Ch., and Yasuda, H., Chem. Rev., 2007, vol. 107, p. 2365.CrossRefGoogle Scholar
  19. 19.
    Hydrogen Bonding in Organic Synthesis, Pihko, P.M., Ed., Weinheim: Wiley, 2009.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. Ya. Samuilov
    • 1
  • F. B. Balabanova
    • 1
  • T. A. Kamalov
    • 1
  • Ya. D. Samuilov
    • 1
  • A. I. Konovalov
    • 2
  1. 1.Kazan State Technological UniversityTatarstanRussia
  2. 2.Arbuzov Institute of Organic and Physical Chemistry, Kazan Research CenterRussian Academy of SciencesTatarstanRussia

Personalised recommendations