Advertisement

Russian Journal of Organic Chemistry

, Volume 46, Issue 8, pp 1231–1242 | Cite as

Amination of 4,6- and 2,4-dichloropyrimidines with polyamines

  • S. M. Kobelev
  • A. D. Averin
  • A. K. Buryak
  • I. P. Beletskaya
Article

Abstract

Amination of a double excess of 4,6-dichloropyrimidine with various diamines in the presence of cesium carbonate in boiling dioxane quantitatively afforded the corresponding N,N′-bis(6-chloropyrimidin-4-yl) derivatives, while its reactions with tri- and tetraamines gave N,N′,N″-tris- and N,N′,N″,N‴-tetrakis(6-chloropyrimidin-4-yl) derivatives. Equimolar amounts of 2,4-dichloro- or 4,6-dichloropyrimidine and diamines reacted in the presence of Pd(0) complexes to form macrocyclic compounds containing pyrimidine fragments. Catalytic reactions of 4 equiv of diamines with 4,6-dichloropyrimidine can lead to the formation of 4,6-bis-(diamino)pyrimidines. Relations between the yield and the nature of diamine and catalytic system were found.

Keywords

MeOH Diamine Macrocycle Oily Substance Macrocyclic Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Temple, C., Kussner, C.L., and Montgomery, J.A., J. Med. Chem., 1962, vol. 5, p. 866.CrossRefGoogle Scholar
  2. 2.
    Israel, M., Protopapa, H.K., Schlein, H.N., and Modest, E.J., J. Med. Chem., 1964, vol. 7, p. 792.CrossRefGoogle Scholar
  3. 3.
    Baindur, N., Chadha, N., and Player, M.R., J. Comb. Chem., 2003, vol. 5, p. 653.CrossRefGoogle Scholar
  4. 4.
    Wade, J.V. and Krueger, C.A., J. Comb. Chem., 2003, vol. 5, p. 267.CrossRefGoogle Scholar
  5. 5.
    van der Westhuyzen, C.W., Rousseau, A.L., and Parkinson, C.J., Tetrahedron, 2007, vol. 63, p. 5394.CrossRefGoogle Scholar
  6. 6.
    Sekiguchi, Y., Kanuma, K., Omodera, K., Tran, T.-A., Semple, G., and Kramer, B.A., WO Patent Appl. no. 2005 095 357, 2005; Chem. Abstr., 2005, vol. 143, no. 387 051.Google Scholar
  7. 7.
    Ding, Q., Gray, N.S., Li, B., Liu, Y., Sim, T., Uno, T., Zhang, G., Pissot Soldermann, C., Breitenstein, W., Bold, G., Caravatti, G., Furet, P., Guagnano, V., Lang, M., Manley, P.W., Schoepfer, J., and Spanka, C., WO Patent Appl. no. 2006 000 420, 2006; Chem. Abstr., 2006, vol. 144, no. 108 347.Google Scholar
  8. 8.
    Sisko, J.T., Tucker, T.J., Bilodeau, M.T., Buser, C.A., Ciecko, P.A., Coll, K.E., Fernandes, C., Gibbs, J.B., Koester, T.J., Kohl, N., Lynch, J.J., Mao, X., McLoughlin, D., Miller-Stein, C.M., Rodman, L.D., Rickert, K.W., Sepp-Lorenzino, L., Shipman, J.M., Thomas, K.A., Wong, B.K., and Hartman, G.D., Bioorg. Med. Chem. Lett., 2006, vol. 16, p. 1146.CrossRefGoogle Scholar
  9. 9.
    Sciotti, R.J., Starr, J.T., Richardson, C., Rewcastle, G.W., Palmer, B.D., Sutherland, H.C., Spicer, J.A., and Chen, H., WO Patent Appl. no. 2005 089 763, 2005; Chem. Abstr., 2005, vol. 143, no. 347 170.Google Scholar
  10. 10.
    Prescott, J.C., Braisted, A., and Morrow, J., WO Patent Appl. no. 2005 084 905, 2005; Chem. Abstr., 2005, vol. 142, no. 406 531.Google Scholar
  11. 11.
    Beattie, J.F., Breault, G.A., Ellston, R.P.A., Green, S., Jewsbury, P.J., Midgley, C.J., Naven, R.T., Minshull, C.A., Pauptit, R.A., Tucker, J.A. and Pease, J.E., Bioorg. Med. Chem. Lett., 2003, vol. 13, p. 2955.CrossRefGoogle Scholar
  12. 12.
    Bardelle, C., Cross, D., Davenport, S., Kettle, J.G., Ko, E.J., Leach, A.G., Mortlock, A., Read, J., Roberts, N.J., Robins, P., and Williams, E.J., Bioorg. Med. Chem. Lett., 2008, vol. 18, p. 2776.CrossRefGoogle Scholar
  13. 13.
    Pei, Zh., Li, X., von Geldern, T.W., Longenecker, K., Pireh, D., Stewart, K.D., Backes, B.J., Lai, C., Lubben, T.H., Ballaron, S.J., Beno, D.W.A., Kempf-Grote, A.J., Sham, H.L., and Trevillyan, J.M., J. Med. Chem., 2007, vol. 50, p. 1983.CrossRefGoogle Scholar
  14. 14.
    Luo, G., Chen, L., and Poindexter, G.S., Tetrahedron Lett., 2002, vol. 43, p. 5739.CrossRefGoogle Scholar
  15. 15.
    Geuns-Meyer, S.D., Chaffee, S.C., Johnson, R.E., Kim, J.L., Nunes, J.J., and Patel, V.F., WO Patent Appl. no. 2007 024 754, 2007; Chem. Abstr., 2007, vol. 146, no. 295 952.Google Scholar
  16. 16.
    Huang, S., Liu, Z., Albaugh, P.A., Wang, X., Pan, S., Xie, Y., and Zhang, G., WO Patent Appl. no. 2008 157 131, 2008; Chem. Abstr., 2009, vol. 150, no. 77 701.Google Scholar
  17. 17.
    Albaugh, P., Chopiuk, G.S., Ding, Q., Huang, S., Liu, Z., Pan, S., Ren, P., Wang, X., Wang, X., Xie, Y., Zhang, C., Zhang, Q., Zhang, G., Poon, D., Rehhove, P., and Paul, S., WO Patent Appl. no. 2008 042 639, 2008; Chem. Abstr., 2008, vol. 148, no. 449 654.Google Scholar
  18. 18.
    Zhang, G., Ren, P., Wang, X., Gray, N.S., and Sim, T., WO Patent Appl. no. 2007 005 673, 2007; Chem. Abstr., 2007, vol. 146, no. 142 671.Google Scholar
  19. 19.
    Ren, P., Wang, X., Zhang, G., Ding, Q., You, S., Zhang, Q., Chopiuk, G., Albaugh, P.A., Sim, T., and Gray, N.S., WO Patent Appl. no. 2005 123 719, 2005; Chem. Abstr., 2006, vol. 144, no. 88 305.Google Scholar
  20. 20.
    Collins, I., Reader, J.C., Matthews, T.P., Cheung, K.M., Proisy, N., Williams, D.H., Klair, S.S., Scanlon, J.E., Piton, N., Addison, G.J., and Cherry, M., WO Patent Appl. no. 2009 044 162, 2009; Chem. Abstr., 2009, vol. 150, no, 398 578.Google Scholar
  21. 21.
    Zhang, G., Ren, P., Gray, N.S., Sim, T., Liu, Y., Wang, X., Che, J., Tian, S.-S., Sandberg, M.L., and Spalding, T.A., Bioorg. Med. Chem. Lett., 2008, vol. 18, p. 5618.CrossRefGoogle Scholar
  22. 22.
    Maier, J.A., Brugel, T.A., Sabat, M., Golebiowski, A., Laufersweiler, M.J., VanRens, J.C., Hopkins, C.R., De, B., Hsieh, L.C., and Brown, K.K., Bioorg. Med. Chem. Lett., 2006, vol. 16, p. 3646.CrossRefGoogle Scholar
  23. 23.
    Salituro, F., Ledeboer, M., Ledford, B., Wang, J., Pierce, A., Duffy, J., and Messersmith, D., US Patent no. 7 329 652, 2006; Chem. Abstr., 2006, vol. 144, no. 331 443.Google Scholar
  24. 24.
    Zhang, Q., Liu, Y., Gao, F., Ding, Q., Cho, C., Hur, W., Jin, Y., Uno, T., Joazeiro, C.A.P., and Gray, N., J. Am. Chem. Soc., 2006, vol. 128, p. 2182.CrossRefGoogle Scholar
  25. 25.
    Kim, M.J., Kim, J.Y., Seo, H.J., Lee, J., Lee, S.-H., Kim, M.-S., Kang, J., Kim, J., and Lee, J., Bioorg. Med. Chem. Lett., 2009, vol. 19, p. 4692.CrossRefGoogle Scholar
  26. 26.
    Jones, R.M., Semple, G., Xiong, Y., Shin, Y.-J., Ren, A.S., Lehmann, J., Fioravanti, B., Bruce, M.A., and Choi, J.S.K., WO Patent Appl. no. 2005 121 121, 2005; Chem. Abstr., 2006, vol. 144, no. 69 843.Google Scholar
  27. 27.
    Kubota, H., Sugahara, M., Furukawa, M., Takano, M., and Motomura, D., WO Patent Appl. no. 2005 095 409, 2005; Chem. Abstr., 2005, vol. 143, no. 386 934.Google Scholar
  28. 28.
    Denhart, D.J., Purandare, A.V., Catt, J.D., King, H.D., Gao, A., Deskus, J.A., Poss, M.A., Stark, A.D., Torrente, J.R., and Johnson, G., Bioorg. Med. Chem. Lett., 2004, vol. 14, p. 4249.CrossRefGoogle Scholar
  29. 29.
    Sato, K., Takeuchi, S.-i., Arai, S., Yamaguchi, M., and Yamagishi, T., Heterocycles, 2007, vol. 73, p. 209.CrossRefGoogle Scholar
  30. 30.
    Cherkasov, V.M., Grafova, I.O., Kapran, N.A., and Ramanenko, E.A., Dokl. Akad. Nauk Ukr. SSR, Ser. B: Geol., Khim. Biol. Nauki, 1989, no. 5, p. 54.Google Scholar
  31. 31.
    Freyne, E.J.E., Willems, M., Embrechts, W.C.J., Van Emelen, K., Van Brandt, S.F.A., and Rombouts, F.J.R., WO Patent Appl. no. 2006 061 415, 2006; Chem. Abstr., 2006, vol. 145, no. 83 662.Google Scholar
  32. 32.
    Wang, L.-X., Wang, D.-X., Huang, Z.-T., and Wang, M.-X., J. Org. Chem., 2010, vol. 75, p. 741.CrossRefGoogle Scholar
  33. 33.
    Jhaumeer-Laulloo, S. and Witvrouw, M., Indian J. Chem., Sect. B, 2000, vol. 39, p. 842.Google Scholar
  34. 34.
    Luecking, U., Siemeister, G., Schaefer, M., and Briem, H., DE Patent no. 10 239 042, 2004; Chem. Abstr., 2004. vol. 140, no. 235 737.Google Scholar
  35. 35.
    Blanchard, S., Ethirajulu, K., Lee, C.H.A., Nagaraj, H.K.M., Poulsen, A., Sun, E.T., Tan, Y.L.E., Teo, E.L., and William, A.D., WO Patent Appl. no. 2007 058 628, 2007; Chem. Abstr., 2007, vol. 147, no. 9958.Google Scholar
  36. 36.
    Blanchard, S., Ethirajulu, K., Lee, C.H.A., Nagaraj, H.K.M., Poulsen, A., Sun, E.T., Tan, Y.L.E., Teo, E.L., and William, A.D., WO Patent Appl. no. 2007 058 627, 2007; Chem. Abstr., 2007, vol. 147, no. 9957.Google Scholar
  37. 37.
    Luecking, U., EP Patent no. 1 710 246, 2006; Chem. Abstr., 2006, vol. 145, no. 419 188.Google Scholar
  38. 38.
    Liu, H., Drizin, I., Koenig, J.R., Cowart, M.D., Zhao, C., Wakefield, B.D., Black, L.A., and Altenbach, R.J., US Patent Appl. Publ. no. 2009/0253 678, 2009; Chem. Abstr., 2009, vol. 151, no. 448 445.Google Scholar
  39. 39.
    Liu, H., Drizin, I., Cowart, M.D., and Altenbach, R.J., WO Patent Appl. no. 2009 137 492, 2009; Chem. Abstr., 2009, vol. 151, no. 550 597.Google Scholar
  40. 40.
    Newkome, G.R., Nayak, A., Sorci, M.G., and Benton, W.H., J. Org. Chem., 1979, vol. 44, p. 3812.CrossRefGoogle Scholar
  41. 41.
    Newkome, G.R., Nayak, A., Otemaa, J., Van, D.A., and Benton, W.H., J. Org. Chem., 1978, vol. 43, p. 3362.CrossRefGoogle Scholar
  42. 42.
    Potts, K.T. and Cipullo, M.J., J. Org. Chem., 1982, vol. 47, p. 3038.CrossRefGoogle Scholar
  43. 43.
    Redd, J.T., Bradshaw, J.S., Huszthy, P., and Izatt, R.M., J. Heterocycl. Chem., 1994, vol. 31, p. 1047.CrossRefGoogle Scholar
  44. 44.
    Redd, J.T., Bradshaw, J.S., Huszthy, P., Izatt, R.M., and Dalley, N.K., J. Heterocycl. Chem., 1998, vol. 35, p. 1.CrossRefGoogle Scholar
  45. 45.
    Mikhailov, A.S., Pashkurov, N.G., Reznik, V.S., Giniyatullin, R.Kh., Skuzlova, V.I., Efremov, Yu.Ya., Sharafutdinova, D.R., Shagidullin, R.R., Chernova, A.V., Doroshkina, G.M., Nafikova, A.A., and Azancheev, N.M., Dokl. Ross. Akad. Nauk, 1998, vol. 362, p. 643.Google Scholar
  46. 46.
    Shagidullin, R.R., Chernova, A.V., Doroshkina, G.M., Kataev, V.E., Bazhanova, Z.G., Katsyuba, S.A., Reznik, V.S., Mikhailov, A.S., Giniyatullin, R.Kh., Pashkurov, N.G., Efremov, Yu.Ya., and Nafikova, A.A., Russ. J. Gen. Chem., 2002, vol. 72, p. 1625.CrossRefGoogle Scholar
  47. 47.
    Mikhailov, A.S., Giniyatullin, R.Kh., Semenov, V.E., Reznik, V.S., Nafikova, A.A., Latypov, Sh.K., Efremov, Yu.Ya., and Sharafutdinova, D.R., Izv. Ross. Akad. Nauk, Ser. Khim., 2003, p. 1324.Google Scholar
  48. 48.
    Zhil’tsova, E.P., Kudryavtseva, L.A., Gainanova, G.A., Timosheva, A.P., Mikhailov, A.S., Giniyatullin, R.Kh., Nafikova, A.A., Reznik, V.S., and Konovalov, A.I., Russ. J. Gen. Chem., 2005, vol. 75, p. 1729.CrossRefGoogle Scholar
  49. 49.
    Semenov, V.E., Chernova, A.V., Doroshkina, G.M., Shagidullin, R.R., Giniyatullin, R.Kh., Mikhailov, A.S., Akamsin, V.D., Nikolaev, A.E., Reznik, V.S., Efremov, Yu.Ya., Sharafutdinova, D.R., Nafikova, A.A., Morozov, V.I., and Kataev, V.E., Russ. J. Gen. Chem., 2006, vol. 76, p. 292.CrossRefGoogle Scholar
  50. 50.
    Semenov, V.E., Mikhailov, A.S., Romanova, E.S., Voloshina, A.D., Kulik, N.V., Uraleva, S.Yu., Kozlov, A.V., Latypov, Sh.K., and Reznik, V.S., Russ. J. Gen. Chem., 2009, vol. 79, p. 134.CrossRefGoogle Scholar
  51. 51.
    Semenov, V.E., Nikolaev, A.E., Galiullina, L.F., Lodochnikova, O.A., Litvinov, I.A., Timosheva, A.P., Kataev, A.V., Sharafutdinova, D.R., Efremov, Yu.Ya., Chernova, A.V., Latypov, Sh.K., and Reznik, V.S., Izv. Ross. Akad. Nauk, Ser. Khim., 2006, p. 539.Google Scholar
  52. 52.
    Semenov, V.E., Nikolaev, A.E., Kozlov, A.V., Pod”yachev, S.N., Lodochnikova, O.A., Kataeva, O.N., Latypov, Sh.K., and Reznik, V.S., Russ. J. Org. Chem., 2008, vol. 44, p. 891.CrossRefGoogle Scholar
  53. 53.
    Semenov, V.E., Nikolaev, A.E., Kozlov, A.V., Efremov, Yu.Ya., Latypov, Sh.K., and Reznik, V.S., Russ. J. Org. Chem., 2008, vol. 44, p. 882.CrossRefGoogle Scholar
  54. 54.
    Averin, A.D., Ulanovskaya, O.A., and Beletskaya, I.P., Khim. Geterotsikl. Soedin., 2008, p. 1418.Google Scholar
  55. 55.
    Averin, A.D., Shukhaev, A.V., Golub, S.L., Buryak, A.K., and Beletskaya, I.P., Synthesis, 2007, p. 2995.Google Scholar
  56. 56.
    Averin, A.D., Ulanovskaya, O.A., Pleshkova, N.A., Borisenko, A.A., and Beletskaya, I.P., Collect. Czech. Chem. Commun., 2007, vol. 72, p. 785.CrossRefGoogle Scholar
  57. 57.
    Averin, A.D., Ulanovskaya, O.A., Fedotenko, I.A., Borisenko, A.A., Serebryakova, M.V., and Beletskaya, I.P., Helv. Chim.Acta, 2005, vol. 88, p. 1983.CrossRefGoogle Scholar
  58. 58.
    Ukai, T., Kawazura, H., Ishii, Y., Bonnet, J.J., and Ibers, J.A., J. Organomet. Chem., 1974, vol. 65, p. 253.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • S. M. Kobelev
    • 1
  • A. D. Averin
    • 1
  • A. K. Buryak
    • 2
  • I. P. Beletskaya
    • 1
    • 2
  1. 1.Faculty of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations