Russian Journal of Organic Chemistry

, Volume 44, Issue 11, pp 1619–1625 | Cite as

Enthalpy and entropy relations in reactions of 2,4-dinitrophenyl benzoate with phenols in the presence of potassium carbonate in dimethylformamide

  • I. A. Khalfina
  • V. M. Vlasov


By means of competing reactions procedure the temperature dependence of the relative reactivity of phenols in reactions with 2,4-dinitrophenyl benzoate in the presence of potassium carbonate and DMF was examined. The correlation analysis of the relative rate constants k ArOH/k PhOH and the difference in the activation parameters (ΔΔH and ΔΔS ) of the competeing reactions revealed the existence of three isokinetic series. The interpretation of the transesterification mechanism was performed applying the approach underlain by the analysis of the effect of substituents nature on the activation parameters.


Transesterification Ethyl Ether Entropy Relation Potassium Carbonate Phenyl Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lee, H., Darden, T.A., and Pedersen, L.G., J. Am. Chem. Soc., 1996, vol. 118, p. 3946; Page, M.I. and Laws, A.P., Chem. Commun., 1998, p. 1609; Du, W. and Risley, J.M., Org. Biomol. Chem., 2003, p. 1900; Zimmerman, S.C., Korthals, J.S., and Kramer, K.D., Tetrahedron, 1991, vol. 47, p. 2649; Pitarch, J., Pascual-Ahuir, J.-L., Silla, E., Tuson, I., and Moliner, V., J. Chem. Soc., Perkin Trans. 2, 1999, p. 1351; Beck-Piotraschke, K. and Jakubke, H.-D., Tetrahedron: Asymmetry, 1998, p. 1505.CrossRefGoogle Scholar
  2. 2.
    Yasnikov, A.A., Organicheskie katalizatory kofermenty i fermenty (Organic Catalysts, Coenzymes, and Enzymes), Kiev: Naukova Dumka, 1982.Google Scholar
  3. 3.
    Adler, M., Adler, S., and Boche, G., J. Phys. Org. Chem., 2005, vol. 18, p. 193.CrossRefGoogle Scholar
  4. 4.
    Williams, A., Concerted Organic and Bio-Organic Mechanisms, Boca Raton: CRC Press LLC, 2000.Google Scholar
  5. 5.
    Ba-Saif, S.A., Colthurst, M., Waring, M.A., and Williams, A., J. Chem. Soc., Perkin, Trans. 2, 1991, p. 1901.Google Scholar
  6. 6.
    Ba-Saif, S., Luthra, A.K., and Williams, A., J. Am. Chem., 1989, vol. 111, p. 2647.CrossRefGoogle Scholar
  7. 7.
    Um, I.-H., Min, J.-S., Jeon, J.S., and Kwon, D.-S., Bull. Korean Chem. Soc., 1995, vol. 16, p. 569.Google Scholar
  8. 8.
    Os’kina, I.A. and Vlasov, V.M., Zh. Org. Khim., 2006, vol. 42, p. 886.Google Scholar
  9. 9.
    Sasson, Y. and Bilman, N.J., J. Chem. Soc., Perkin Trans. 2, 1989, p. 2029; Landini, D. and Penso, M., J. Org. Chem., 1991, vol. 56, p. 420.Google Scholar
  10. 10.
    Hansch, C., Leo, A., and Taft, R.W., Chem. Rew., 1991, vol. 91, p. 165.CrossRefGoogle Scholar
  11. 11.
    Bordwell, F.G. and Cheng, J.P., J. Am. Chem. Soc., 1991, vol. 113, p. 1736.CrossRefGoogle Scholar
  12. 12.
    Maran, F., Celadon, D., Severin, M.G., and Vianello, E., J. Am. Chem. Soc., 1991, vol. 113, p. 9320.CrossRefGoogle Scholar
  13. 13.
    Liu, L., Guo, Q.X. Chem. Rev., 2001, vol. 101, 673.CrossRefGoogle Scholar
  14. 14.
    Ruff, F., Internet Electron. J. Mol. Des., 2004, vol. 3, p. 474; Ruff, F., J. Mol. Stuct. (Theochem)., 2002, vol. 617, p. 31.Google Scholar
  15. 15.
    Leffler, J.E. and Grunwald, E., Rates and Equilibria of Organic Reactions, New York: Wiley, 1963.Google Scholar
  16. 16.
    Um, I.-H., Park, Y.-M., Fujio, M., Mishima, M., and Tsuno, Y., J. Org. Chem., 2007, vol. 72, p. 4816; Oh, H.K., Oh, J.Y., Sung, D.D., and Lee, I., J. Org. Chem., 2005, vol. 70, p. 5624; Castro, E.A., Aguayo, R., Bessolo, J., and Santos, J.G., J. Org. Chem., 2005, vol. 70, p. 7788.CrossRefGoogle Scholar
  17. 17.
    Khalfina, I.A. and Vlasov, V.M., J. Phys. Org. Chem., 2007, vol. 20, p. 369.CrossRefGoogle Scholar
  18. 18.
    Boreskov, G.K., Geterogennyi kataliz (Geterogeneous Catalysis). Moscow: Nauka, 1986, p. 51.Google Scholar
  19. 19.
    Carey, F.A. and Sundberg, R.J., Adv. Org. Chem. A: Structure and Mechanisms, 2007, ch. XXI, p. 319.Google Scholar
  20. 20.
    Bothner-By, A.A. and Glick, R.E., J. Chem. Phys., 1958, vol. 26, p. 1651; Timm, E.W. and Hinshelwood, C.N., J. Chem. Soc., 1938, p. 862; Hartman, R.J. and Gassmann, A.G., J. Am. Chem. Soc., 1940, vol. 62, p. 1559.CrossRefGoogle Scholar
  21. 21.
    Anderson, B.M. and Jencks, W.P., J. Am. Chem. Soc., 1960, vol. 82, p. 1773; Noyce, D.S., Bottini, A.T., and Smith, S.G., J. Org. Chem., 1958, 23, 752; Ogata, Y., Kawasaki, A., and Okumura, N., J. Org. Chem., 1964, vol. 29, p. 1985; Cross, R.P. and Fugassi, P., J. Am. Chem. Soc., 1949, vol. 71, p. 223; Craft, M.J. and Lester, C.T., J. Am. Chem. Soc., 1951, vol. 73, p. 1127.CrossRefGoogle Scholar
  22. 22.
    Kym, O., Ber., 1935, vol. 32, p. 132.Google Scholar
  23. 23.
    Lee, C.K., Yu, J.S., and Lee, U.-J., J. Heterocycl. Chem., 2002, p. 1207; Wagner, G. and Horn, H., Pharmazie, 1973, vol. 28, p. 427.Google Scholar
  24. 24.
    Williams, F.J. and Donahue, P.E., J. Org. Chem., 1977, vol. 42, p. 3414.CrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations