Advertisement

Quantum-chemical study on the reaction of phenyl isocyanate with linear methanol associates. Addition at the C=N bond

  • A. Ya. Samuilov
  • L. A. Zenitova
  • Ya. D. Samuilov
  • A. I. Konovalov
Article

Abstract

Quantum-chemical calculations at the B3LYP/6-311++G(df,p) level of theory showed that reactions of phenyl isocyanate with methanol associates involve formation of pre-and post-reaction complexes. The reactions proceed through late asymmetric cyclic transition states. The height of the energy barrier decreases as the degree of association of the alcohol increases. The relative change in the Gibbs energy in the reaction of phenyl isocyanate with methanol also becomes smaller as the degree of alcohol association increases.

Keywords

Isocyanate Methanol Molecule Phenyl Isocyanate Cyclic Transition State Calculated Thermodynamic Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Saunders, J.H. and Frisch, K.C., Polyurethanes: Chemistry and Technology, New York: Intersci., 1962–1964.Google Scholar
  2. 2.
    Wrich, H., Chemistry and Technology of Isocyanates, New York: Wiley, 1996.Google Scholar
  3. 3.
    Advances in Urethane Science and Technology, Frisch, K.C. and Klempner, D., Eds., Lancaster: Technomic, 1998, vol. 14.Google Scholar
  4. 4.
    Thompson, T., Polyurethanes as Specialty Chemicals: Principles and Applications, Boca Raton: CRC, 2005.Google Scholar
  5. 5.
    Brock, F.H., J. Org. Chem., 1959, vol. 24, p. 1802.CrossRefGoogle Scholar
  6. 6.
    Kaplan, M., J. Chem. Eng. Data, 1961, vol. 6, p. 272.CrossRefGoogle Scholar
  7. 7.
    Marcu, N., Bacalodgly, R., Tölgyi, S., and Cotarca, L., J. Prakt. Chem., 1988, vol. 330, p. 428.CrossRefGoogle Scholar
  8. 8.
    McFarland, J.W. and Thoennes, D.J., J. Org. Chem., 1970, vol. 35, p. 704.CrossRefGoogle Scholar
  9. 9.
    Nesterov, O.V. and Entelis, S.G., Kinet. Katal., 1965, vol. 6, p. 178.Google Scholar
  10. 10.
    Chang, V.S.C. and Kennedy, J.P., Polym. Bull., 1989, vol. 9, p. 479.Google Scholar
  11. 11.
    Sivakamasundari, S. and Ganesan, R., J. Org. Chem., 1984, vol. 49, p. 720.CrossRefGoogle Scholar
  12. 12.
    Thiele, L., Monatsh. Chem., 1992, vol. 123, p. 875.Google Scholar
  13. 13.
    Burel, F., Feldman, A., and Bunel, C., Polymer, 2005, vol. 46, p. 15.CrossRefGoogle Scholar
  14. 14.
    Ephraim, S., Woodward, A.E., and Mesrobian, R.B., J. Am. Chem. Soc., 1958, vol. 80, p. 1326.CrossRefGoogle Scholar
  15. 15.
    Oberth, A.E. and Bruenner, R.S., J. Phys. Chem., 1968, vol. 72, p. 845.CrossRefGoogle Scholar
  16. 16.
    Tiger, R.P., Bekhli, L.S., and Entelis, S.G., Kinet. Katal., 1974, vol. 15, p. 586.Google Scholar
  17. 17.
    Draye, A.-C., Tarasov, D.N., and Tondeur, J.-J., React. Kinet. Catal. Lett., 1999, vol. 66, p. 199.CrossRefGoogle Scholar
  18. 18.
    Sato, M., J. Org. Chem., 1962, vol. 27, p. 819.CrossRefGoogle Scholar
  19. 19.
    Bondarenko, S.P., Tiger, R.P., and Entelis, S.G., Zh. Fiz. Khim., 1981, vol. 55, p. 1716.Google Scholar
  20. 20.
    Berlin, P.A., Tiger, R.P., and Entelis, S.G., Kinet. Katal., 1987, vol. 28, p. 1347.Google Scholar
  21. 21.
    Nizel’ski, Yu.N., Kataliz i mekhanizm reaktsii obrazovaniya polimerov (Catalysis and Mechanism of Formation of Polymers), Kiev: Naukova Dumka, 1980, p. 77.Google Scholar
  22. 22.
    Chernova, E.A., Tiger, R.P., and Tarakanov, O.G., Zh. Strukt. Khim., 1986, vol. 27, p. 19.Google Scholar
  23. 23.
    Kozak, N.V. and Nizel’ski, Yu.N., Teor. Eksp. Khim., 1990, vol. 26, p. 345.Google Scholar
  24. 24.
    Raspoet, G. and Nguen, M.T., J. Org. Chem., 1998, vol. 63, p. 6878.CrossRefGoogle Scholar
  25. 25.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., Gaussian 03, Revision C.02, Wallingford CT: Gaussian, 2004.Google Scholar
  26. 26.
    Foresman, J.B. and Frisch, A.E., Exploring Chemistry with Electronic Structure Methods, Pittsburgh: GaussianGoogle Scholar
  27. 27.
    Laikov, D.N., Chem. Phys. Lett., 1997, vol. 281, p. 151.CrossRefGoogle Scholar
  28. 28.
    Laikov, D.N., Chem. Phys. Lett., 2005, vol. 416, p. 116.CrossRefGoogle Scholar
  29. 29.
    Frenkel, M., Kabo, G.J., Marsh, K.N., Roganov, G.N., and Wilhoit, R.C., Thermodynamics of Organic Compounds in the Gas State, College Station: Thermodynamics Research Center, 1994, p. 159.Google Scholar
  30. 30.
    Osipov, O.A., Minkin, V.I., and Garnovskii, A.D., Spravochnik po dipol’nym momentam (Dipole Moment Handbook), Moscow: Vysshaya Shkola, 1971.Google Scholar
  31. 31.
    Martrenchard, S., Gregoire, G., Dedonder-Lardeux, C., Jouvet, C., and Solgadi, D., PhysChemComm., 1999, vol. 2, p. 15.CrossRefGoogle Scholar
  32. 32.
    Castleman, A.W., Jr., Tzeng, W.B., Wei, S., and Morgan, S., J. Chem. Soc., Faraday Trans., 1990, vol. 86, p. 2417.CrossRefGoogle Scholar
  33. 33.
    Brutschy, B., Bisling, P., Rühl, E., and Baumgärtel, H., Z. Phys. D: Atoms, Mol. Cl., 1987, vol. 5, p. 217.CrossRefGoogle Scholar
  34. 34.
    Booze, J.A. and Baer, T., J. Chem. Phys., 1992, vol. 96, p. 5541.CrossRefGoogle Scholar
  35. 35.
    Bushuev, Yu.G. and Dubinkina, T.A., Zh. Fiz. Khim., 1996, vol. 70, p. 1628.Google Scholar
  36. 36.
    Bushuev, Yu.G., Doctoral (Chem.) Dissertation, Ivanovo, 2001.Google Scholar
  37. 37.
    Larsen, R.W., Zielke, Ph., and Suhm, M.A., J. Chem. Phys., 2007, vol. 126, no. 194 307.Google Scholar
  38. 38.
    Curtiss, L.A. and Blander, M., Chem. Rev., 1988, vol. 88, p. 827.CrossRefGoogle Scholar
  39. 39.
    Gerritzen, D. and Limbach, H.-H., J. Phys. Chem., 1980, vol. 84, p. 799.CrossRefGoogle Scholar
  40. 40.
    Liao, H.Z. and Mavtire, D.E., J. Am. Chem. Soc., 1974, vol. 96, p. 2058.CrossRefGoogle Scholar
  41. 41.
    Marstokk, K.-M. and Mollendal, H., Acta Chem. Scand., 1999, vol. 53, p. 79.CrossRefGoogle Scholar
  42. 42.
    Moraczewski, A.L., Banaszynsi, L.A., From, A.M., White, C.E., and Smith, B.D., J. Org. Chem., 1998, vol. 63, p. 7258.CrossRefGoogle Scholar
  43. 43.
    Dyer, E., Taylor, H.A., Mason, S., and Samson, J., J. Am. Chem. Soc., 1949, vol. 71, p. 4106.CrossRefGoogle Scholar
  44. 44.
    Rauk, A., Orbital Interaction Theory of Organic Chemistry, New York: Wiley, 2001, 2nd ed.Google Scholar
  45. 45.
    Samuilov, Ya.D. and Cherezova, E.N., Reaktsionnaya sposobnost’ organicheskikh soedinenii (Reactivity of Organic Compounds), Kazan’: Kazan. Gos. Tekhnol. Univ., 2003.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • A. Ya. Samuilov
    • 1
  • L. A. Zenitova
    • 1
  • Ya. D. Samuilov
    • 1
  • A. I. Konovalov
    • 2
  1. 1.Kazan State Technological UniversityKazanRussia
  2. 2.Arbuzov Institute of Organic and Physical Chemistry, Kazan Research CenterRussian Academy of SciencesKazanRussia

Personalised recommendations