Russian Journal of Organic Chemistry

, Volume 44, Issue 1, pp 31–37 | Cite as

Quantum-chemical study on the mechanism of formation of geminal hydroxy thiols by reaction of 1,3-dihalopropan-2-ones with hydrogen sulfide

  • V. A. Shagun
  • L. G. Shagun
  • I. A. Dorofeev
  • I. A. Mikhailova
  • M. G. Voronkov


The reaction mechanism of 1,3-dihalopropan-2-ones with hydrogen sulfide in the presence of hydrogen chloride was studied in terms of the density functional theory. Unlike 1-halopropan-2-ones which give rise to 1-halo-2-sulfanylpropan-2-ols via preliminary enolization, 1,3-dihalopropan-2-ones preferentially undergo direct nucleophilic attack on the carbonyl group by hydrogen sulfide. The potential energy surface for rotational isomerism of 1,3-dihalopropane-2-thiones and 1,3-dihalo-2-sulfanylpropan-2-ols was analyzed, and their most stable rotamers were identified.


Potential Energy Surface Hydrogen Sulfide Halogen Atom Enol Form Hydrogen Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Voronkov, M.G., Shagun, L.G., and Shagun, V.A., Russ. J. Org. Chem., 2003, vol. 39, p. 905.CrossRefGoogle Scholar
  2. 2.
    Voronkov, M., Shagun, L., Ermolyuk, L., and Timokhina, L., Sulfur Chem., 2004, vol. 25, p. 131.CrossRefGoogle Scholar
  3. 3.
    Shagun, L.G., Usov, V.A., Voronkov, M.G., Usova, T.L., and Il’icheva, L.K., Zh. Org. Khim., 1989, vol. 25, p. 878.Google Scholar
  4. 4.
    Usov, V.A., Shagun, L.G., Belskii, V.K., and Usova, T.L., Sulfur Lett., 1992, vol. 14, p. 145.Google Scholar
  5. 5.
    Shagun, L.G., Usova, T.L., Voronkov, M.G., Usov, V.A., Romanenko, L.S., and Efremova, G.G., Zh. Org. Khim., 1990, vol. 26, p. 2029.Google Scholar
  6. 6.
    Shagun, L.G., Ermolyuk, L.P., Sarapulova, G.I., and Voronkov, M.G., Russ. J. Org. Chem., 2004, vol. 40, p. 766.CrossRefGoogle Scholar
  7. 7.
    Usov, V.A., Shagun, L.G., Belskii, V.K., Usova, T.L., Perkovskaya, L.M., and Voronkov, M.G., Sulfur Lett., 1995, vol. 18, p. 281.Google Scholar
  8. 8.
    Shagun, L.G., Timokhina, L.V., Voronkov, M.G., Dorofeev, I.A., Usova, T.L., Sarapulova, G.I., and Klyba, L.V., Russ. J. Org. Chem., 1996, vol. 32, p. 1823.Google Scholar
  9. 9.
    Shagun, L.G., Ermolyuk, L.P., Dorofeev, I.A., Il’icheva, L.N., and Voronkov, M.G., Khim. Geterotsikl. Soedin., 2004, p. 1400.Google Scholar
  10. 10.
    Shagun, L.G., Ermolyuk, L.P., Dorofeev, I.A., Sarapulova, G.I., and Voronkov, M.G., Khim. Geterotsikl. Soedin., 2005, p. 1112.Google Scholar
  11. 11.
    Shagun, L.G., Dabizha, O.N., Voronkov, M.G., Myachina, G.F., Sarapulova, G.I., Vakul’skaya, T.I., Protasova, L.E., and Panov, A.M., Izv. Ross. Akad. Nauk, Ser. Khim., 2000, p. 330.Google Scholar
  12. 12.
    Shagun, V.A., Smirnov, V.I., Shagun, L.G., Shevchenko, S.G., and Frolov, Yu.L., Zh. Strukt. Khim., 2006, p. 847.Google Scholar
  13. 13.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.R., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B.G., Chen, W., Wong, M.W., Andres, J.L., Head-Gordon, M., Replogle, E.S., and Pople, J.A., Gaussian 98. Rev. A.6, Pittsburgh: Gaussian, 1998.Google Scholar
  14. 14.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648; Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, p. 785; Miehlich, B., Savin, A., Stoll, H., and Preuss, H., Chem. Phys. Lett., 1989, vol. 157, p. 200.CrossRefGoogle Scholar
  15. 15.
    Scott, A.P. and Radom, L., J. Phys. Chem., 1996, vol. 100, p. 16502.CrossRefGoogle Scholar
  16. 16.
    Abraham, R.J., Jones, A.D., Warne, M.A., Rittner, R., and Tormena, C.F., J. Chem. Soc., Perkin Trans. 2, 1996, p. 533.Google Scholar
  17. 17.
    Abraham, R.J., Tormena, C.F., and Rittner, R., J. Chem. Soc., Perkin Trans. 2, 1999, p. 1663.Google Scholar
  18. 18.
    Tormena, C.F., Rittner, R., and Abraham, R.J., J. Phys. Org. Chem., 2002, vol. 15, p. 211.CrossRefGoogle Scholar
  19. 19.
    Olivato, P.R. and Rittner, R., Rev. Heteroatom Chem., 1996, vol. 15, p. 115.Google Scholar
  20. 20.
    Shagun, V.A., Shagun, L.G., and Voronkov, M.G., Russ. J. Gen. Chem., 2004, vol. 74, p. 594.CrossRefGoogle Scholar
  21. 21.
    Tormena, C.F., Freitas, M.P., Rittner, R., and Abraham, R.J., J. Phys. Chem., 2004, vol. 108, p. 5161.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • V. A. Shagun
    • 1
  • L. G. Shagun
    • 1
  • I. A. Dorofeev
    • 1
  • I. A. Mikhailova
    • 1
  • M. G. Voronkov
    • 1
  1. 1.Favorskii Irkutsk Institute of Chemistry, Siberian DivisionRussian Academy of SciencesIrkutskRussia

Personalised recommendations