Advertisement

Russian Journal of Organic Chemistry

, Volume 43, Issue 9, pp 1269–1277 | Cite as

Electrochemical reduction of organic and organometallic compounds. Polarization effect in radical anions

  • O. V. Novikova
  • O. V. Kuznetsova
  • A. N. Egorochkin
Article

Abstract

Half-wave potentials of electrochemical reduction and electron affinities of X-B-RC compounds belonging to 23 reaction series depend not only on the inductive and resonance effects but also on the polarization effect of the X substituent, which was not taken into account previously. In some cases, the contribution of the polarization effect reaches 50% of the overall substituent effect. The main factors responsible for the magnitude of polarization effect in X-B-R C radical anions are the natures of reaction center RC and bridging moiety B and the distance between the substituent X and reaction center RC.

Keywords

Lower Unoccupied Molecular Orbital Polarization Effect Electron Affinity Electrochemical Reduction Substituent Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zuman, P., Substituent Effects in Organic Polarography, New York: Plenum, 1967.Google Scholar
  2. 2.
    Mairanovskii, S.G., Stradyn’, Ya.P., and Bezuglyi, V.D., Polyarografiya v organicheskoi khimii (Polarography in Organic Chemistry), Leningrad: Khimiya, 1975.Google Scholar
  3. 3.
    Tomilov, A.P., Chernykh, I.N., and Kargin, Yu.M., Elektrokhimiya elementoorganicheskikh soedinenii (Electrochemistry of Organometallic Compounds), Moscow: Nauka, 1985.Google Scholar
  4. 4.
    Tomilov, A.P., Chernykh, I.N., and Kargin, Yu.M., Elektrokhimiya elementoorganicheskikh soedinenii (Electrochemistry of Organometallic Compounds), Moscow: Nauka, 1986.Google Scholar
  5. 5.
    Vasil’eva, N.V., Starichenko, V.F., and Shchegoleva, L.N., Russ. J. Org. Chem., 1998, vol. 34, p. 1578.Google Scholar
  6. 6.
    Moraleda, D., El Abed, D., Pellissier, H., and Santelli, M., J. Mol. Struct. (Theochem), 2006, vol. 760, p. 113.CrossRefGoogle Scholar
  7. 7.
    Pacey, P.D. and Tan, Q.-T.N., J. Phys. Chem., 1995, vol. 99, p. 17729.CrossRefGoogle Scholar
  8. 8.
    Egorochkin, A.N. and Kuznetsova, O.V., Russ. J. Org. Chem., 2005, vol. 41, p. 1407.CrossRefGoogle Scholar
  9. 9.
    Egorochkin, A.N. and Kuznetsova, O.V., Russ. J. Org. Chem., 2006, vol. 42, p. 175.CrossRefGoogle Scholar
  10. 10.
    Kuznetsova, O.V., Egorochkin, A.N., and Novikova, O.V., Russ. J. Gen. Chem., 2006, vol. 76, p. 554.CrossRefGoogle Scholar
  11. 11.
    Hansch, C., Leo, A., and Taft, R.W., Chem. Rev., 1991, vol. 91, p. 165.CrossRefGoogle Scholar
  12. 12.
    Grimsrud, E.P., Caldwell, G., Chowdhury, S., and Kebarle, P., J. Am. Chem. Soc., 1985, vol. 107, p. 4627.CrossRefGoogle Scholar
  13. 13.
    Kebarle, P. and Chowdhury, S., Chem. Rev., 1987, vol. 87, p. 513.CrossRefGoogle Scholar
  14. 14.
    Guerra, M., Jones, D., Distefano, G., Scagnolari, F., and Modelli, A., Chem. Phys., 1991, vol. 94, p. 484.CrossRefGoogle Scholar
  15. 15.
    Underwood-Lemons, T., Winkler, D.C., Tossell, J.A., and Moore, J.H., J. Chem. Phys., 1994, vol. 100, p. 9117.CrossRefGoogle Scholar
  16. 16.
    Modelli, A., Scagnolari, F., Distefano, G., Jones, D., and Guerra, M., J. Chem. Phys., 1992, vol. 96, p. 2061.CrossRefGoogle Scholar
  17. 17.
    Olthoff, J.K., Tossell, J.A., and Moore, J.H., J. Chem. Phys., 1985, vol. 83, p. 5627.CrossRefGoogle Scholar
  18. 18.
    Butin, K.P., Beletskaya, I.P., Kashin, A.N., and Reutov, O.A., J. Organomet. Chem., 1967, vol. 10, p. 197.CrossRefGoogle Scholar
  19. 19.
    Gerdil, R., J. Chem. Soc. B, 1966, p. 1071.Google Scholar
  20. 20.
    Modelli, A., Trends Chem. Phys., 1997, vol. 6, p. 57.Google Scholar
  21. 21.
    Hall, M.E., Anal. Chem., 1953, vol. 25, p. 556.CrossRefGoogle Scholar
  22. 22.
    Denisovich, L.I., Gubin, S.P., Chapovskii, Yu.A., and Ustynyuk, N.A., Izv. Akad. Nauk SSSR, Ser. Khim., 1968, p. 924.Google Scholar
  23. 23.
    Schiavon, G., Zecchin, S., Pilloni, G., and Martelli, M., J. Inorg. Nucl. Chem., 1977, vol. 39, p. 115.CrossRefGoogle Scholar
  24. 24.
    Schiavon, G., Zecchin, S., Pilloni, G., and Martelli, M., J. Organomet. Chem., 1976, vol. 121, p. 261.CrossRefGoogle Scholar
  25. 25.
    Cardaci, G., Murgia, S., and Paliani, G., J. Organomet. Chem., 1971, vol. 30, p. 253.Google Scholar
  26. 26.
    Montauzon, D. and de Poilblanc, R., J. Organomet. Chem., 1975, vol. 93, p. 397.CrossRefGoogle Scholar
  27. 27.
    Butin, K.P., Magdesieva, T.V., and Reutov, O.A., Metalloorg. Khim., 1990, vol. 3, p. 534.Google Scholar
  28. 28.
    Olson, D.C., Mayweg, V.P., and Schrauzer, G.N., J. Am. Chem. Soc., 1966, vol. 88, p. 4876.CrossRefGoogle Scholar
  29. 29.
    Dillow, G.W. and Kebarle, P., J. Am. Chem. Soc., 1989, vol. 111, p. 5592.CrossRefGoogle Scholar
  30. 30.
    Egorochkin, A.N. and Voronkov, M.G., Elektronnoe stroenie organicheskikh soedinenii kremniya, germaniya i olova (Electronic Structure of Organic Silicon, Germanium, and Tin Compounds), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2000.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • O. V. Novikova
    • 1
  • O. V. Kuznetsova
    • 1
  • A. N. Egorochkin
    • 1
  1. 1.Razuvaev Institute of Organometallic ChemistryRussian Academy of SciencesNizhnii NovgorodRussia

Personalised recommendations