Advertisement

Russian Journal of Organic Chemistry

, Volume 43, Issue 4, pp 483–500 | Cite as

Some modern methods for estimation of reactivity of organic compounds

  • Yu. E. Zevatskii
  • D. V. Samoilov
Review

Abstract

The review analyzes main tendencies in the development of some modern methods for estimation of reactivity of organic compounds and reaction regioselectivity. The up-to-date correlation analysis, reactivity descriptors, QSPR, and other methods are compared with respect to their advantages and disadvantages.

Keywords

Substituent Effect Reactivity Index Fukui Function Local Softness Local Hardness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hammett, L., Physical Organic Chemistry, New York: McGraw-Hill, 1970, 2nd ed.Google Scholar
  2. 2.
    Lobanov, V.S. and Karelson, M., Org. Reactiv., 1997, vol. 31, p. 145.Google Scholar
  3. 3.
    Pal’m, V.A., Osnovy kolichestvennoi teorii khimicheskikh reaktsii (Principles of the Quantitative Theory of Chemical Reactions), Leningrad: Khimiya, 1977.Google Scholar
  4. 4.
    Palm, V., Jalas, A., Kiho, J., and Tenno, T., Org. Reactiv., 1997, vol. 31, p. 111.Google Scholar
  5. 5.
    Cherkasov, A.R., Galkin, V.I., and Cherkasov, R.A., Usp. Khim., 1996, vol. 65, p. 695.Google Scholar
  6. 6.
    Cherkasov, A.R., Ionsson, M., Galkin, V.I., and Cherkasov, R.A., Usp. Khim., 2001, vol. 70, p. 3.Google Scholar
  7. 7.
    Tupitsyn, I.F. and Zatsepina, N.N., Russ. J. Gen. Chem., 2002, vol. 72, p. 405.CrossRefGoogle Scholar
  8. 8.
    Tupitsyn, I.F., Russ. J. Gen. Chem., 2004, vol. 74, p. 179.CrossRefGoogle Scholar
  9. 9.
    Tupitsyn, I.F., Russ. J. Gen. Chem., 2004, vol. 74, p. 1020.CrossRefGoogle Scholar
  10. 10.
    Trushkov, L.E., Chuvylkin, N.D., Koz’min, A.S., and Zefirov, N.S., Izv. Ross. Akad. Nauk, Ser. Khim., 1995, p. 824.Google Scholar
  11. 11.
    Dneprovskii, A.S. and Temnikova, T.I., Teoreticheskie osnovy organicheskoi khimii (Theoretical Foundations of Organic Chemistry), Leningrad: Khimiya, 1979.Google Scholar
  12. 12.
    Egorochkin, A.N., Voronkov, M.G., Zderenova, O.V., and Skobeleva, S.E., Izv. Ross. Akad. Nauk, Ser. Khim., 2000, p. 253.Google Scholar
  13. 13.
    Egorochkin, A.N., Voronkov, M.G., Zderenova, O.V., and Skobeleva, S.E., Izv. Ross. Akad. Nauk, Ser. Khim., 2001, p. 41.Google Scholar
  14. 14.
    Egorochkin, A.N., Voronkov, M.G., Zderenova, O.V., and Skobeleva, S.E., Izv. Ross. Akad. Nauk, Ser. Khim., 2001, p. 34.Google Scholar
  15. 15.
    Rao, B.V., Kwon, K.-Y., and Bartels, L., Proc. Natl. Acad. Sci. USA, 2004, vol. 101, p. 17920.PubMedCrossRefADSGoogle Scholar
  16. 16.
    Zhidomirov, G.M., Bagatur’yants, A.A., and Abronin, I.A., Prikladnaya kvantovaya khimiya. Raschety reaktsionnoi sposobnosti i mekhanizmov khimicheskikh reaktsii (Applied Quantum Chemistry. Calculations of Reactivity and Mechanisms of Chemical Reactions), Moscow: Khimiya, 1979.Google Scholar
  17. 17.
    Fukui, K., Chemical Reactivity and Reaction Paths, Klopman, G., Ed., New York: Wiley, 1974.Google Scholar
  18. 18.
    Kohn, W., Usp. Fiz. Nauk, 2002, vol. 172, p. 336.CrossRefGoogle Scholar
  19. 19.
    Hohenberg, P. and Kohn, W., Phys. Rev. B, 1964, vol. 136, p. 864.CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Yang, W. and Parr, R.G., Proc. Natl. Acad. Sci. USA, 1985, vol. 82, p. 6723.PubMedCrossRefADSGoogle Scholar
  21. 21.
    Parr, R.G. and Pearson, R.G., J. Am. Chem. Soc., 1983, vol. 105, p. 7512.CrossRefGoogle Scholar
  22. 22.
    Parr, R.G., Szentpaly, L., and Liu, S., J. Am. Chem. Soc., 1999, vol. 121, p. 9500.CrossRefGoogle Scholar
  23. 23.
    Parr, R.G., Szentpaly, L.V., and Liu, S., J. Am. Chem. Soc., 1999, vol. 121, p. 1922.CrossRefGoogle Scholar
  24. 24.
    Chattaraj, P.K., Maiti, B., and Sarkar, U., J. Phys. Chem. A, 2003, vol. 107, p. 4973.CrossRefGoogle Scholar
  25. 25.
    Contreras, R., Andres, J., Safont, V.S., Campodonico, P., and Santos, J.G., J. Phys. Chem. A, 2003, vol. 107, p. 5588.CrossRefGoogle Scholar
  26. 26.
    Pearson, R.G., J. Chem. Educ., 1987, vol. 64, p. 561.CrossRefGoogle Scholar
  27. 27.
    Parr, R.G. and Yang, W., J. Am. Chem. Soc., 1984, vol. 106, p. 4049.CrossRefGoogle Scholar
  28. 28.
    Thanikaivelan, P., Padmanabhan, J., Subramanian, V., and Ramasami, T., Theor. Chem. Acc., 2002, vol. 107, p. 326.Google Scholar
  29. 29.
    Balawender, R. and Geerlings, P., J. Chem. Phys., 2005, vol. 123, no. 124102; ibid., no. 124103.Google Scholar
  30. 30.
    Senthilkumar, L. and Kolandaivel, P., Mol. Phys., 2005, vol. 103, p. 547.CrossRefGoogle Scholar
  31. 31.
    Olah, J., Van Alsenoy, C., and Sannigrahi, A.B., J. Phys. Chem. A, 2002, vol. 106, p. 3885.CrossRefGoogle Scholar
  32. 32.
    Bulat, F.A., Chamorro, E., Fuentealba, P., and Toro-Labbe, A., J. Phys. Chem. A, 2004, vol. 108, p. 342.CrossRefGoogle Scholar
  33. 33.
    Chattaraj, P.K. and Sengupta, S., J. Phys. Chem., 1996, vol. 100, p. 16126.CrossRefGoogle Scholar
  34. 34.
    Geerlings, P., De Proft, F., and Langenaeker, W., Chem. Rev., 2003, vol. 103, p. 1793.PubMedGoogle Scholar
  35. 35.
    Pérez, P., Parra-Mouchet, J., and Contreras, R.R., J. Chil. Chem. Soc., 2004, vol. 49, p. 30.Google Scholar
  36. 36.
    Pérez, P., Parra-Mouchet, J., and Contreras, R.R., J. Chil. Chem. Soc., 2004, vol. 49, p. 107.CrossRefGoogle Scholar
  37. 37.
    Cherkasov, A.R., Galkin, V.I., Zueva, E., and Cherkasov, R.A., Usp. Khim., 1998, vol. 67, p. 423.Google Scholar
  38. 38.
    Torrent-Sucarrat, M., Luis, J.M., Duran, M., and Sola, M., J. Chem. Phys., 2004, vol. 120, p. 10914.PubMedCrossRefADSGoogle Scholar
  39. 39.
    Meneses, L., Tiznado, W., Contreras, R., and Fuentealba, P., Chem. Phys. Lett., 2004, vol. 383, p. 181.CrossRefGoogle Scholar
  40. 40.
    Chattaraj, P.K., Cedillo, A., and Parr, R.G., Chem. Phys., 1996, vol. 204, p. 429.CrossRefGoogle Scholar
  41. 41.
    Roy, R.K., Krishnamurti, S., Geerlings, P., and Pal, S., J. Phys. Chem. A., 1998, vol. 102, p. 3746.CrossRefGoogle Scholar
  42. 42.
    Morell, C., Grand, A., and Toro-Labbe, A., J. Phys. Chem. A, 2005, vol. 109, p. 205.PubMedCrossRefGoogle Scholar
  43. 43.
    Fuentealba, P., Simon-Manso, Y., and Chattaraj, P.K., J. Phys. Chem. A, 2000, vol. 104, p. 3185.CrossRefGoogle Scholar
  44. 44.
    Gomez, B., Fuentealba, P., and Contreras, R., Theor. Chem. Acc., 2003, vol. 110, p. 421.Google Scholar
  45. 45.
    Chattaraj, P.K., J. Phys. Chem. A, 2001, vol. 105, p. 511.CrossRefGoogle Scholar
  46. 46.
    Noorizadeh, S., J. Mol. Struct. (Theochem), 2005, vol. 713, p. 27.CrossRefGoogle Scholar
  47. 47.
    DeProft, F. and Geerlings, P., Chem. Rev., 2001, vol. 101, p. 1451.CrossRefGoogle Scholar
  48. 48.
    Chatterjee, A., Ebina, T., and Iwasaki, T., J. Phys. Chem. A., 1999, vol. 103, p. 2489.CrossRefGoogle Scholar
  49. 49.
    Kolandaivel, P., Praveena, G., and Selvarengan, P., J. Chem. Sci., 2005, vol. 117, p. 591.Google Scholar
  50. 50.
    Bader, R.F.W., Theor. Chem. Acc., 2001, vol. 105, p. 276.Google Scholar
  51. 51.
    Clark, L.A., Ellis, D.E., and Snurr, Q.R., J. Chem. Phys., 2001, vol. 114, p. 2580.CrossRefADSGoogle Scholar
  52. 52.
    Parthasarathi, R., Padmanabhan, J., Elango, M., Subramanian, V., and Chattaraj, P.K., Chem. Phys. Lett., 2004, vol. 394, p. 225.CrossRefGoogle Scholar
  53. 53.
    Krishnamurti, S. and Pal, S., J. Phys. Chem. A, 2000, vol. 104, p. 7639.CrossRefGoogle Scholar
  54. 54.
    Ponti, A., J. Phys. Chem. A, 2000, vol. 104, p. 8843.CrossRefGoogle Scholar
  55. 55.
    Nagy, A. and Parr, R.G., J. Mol. Struct. (Theochem), 2000, vol. 501, p. 101.CrossRefGoogle Scholar
  56. 56.
    Chattaraj, P.K., Chamorro, E., and Fuentealba, P., Chem. Phys. Lett., 1999, vol. 314, p. 114.CrossRefGoogle Scholar
  57. 57.
    Balawender, R., Safi, B., and Geerlings, P., J. Phys. Chem. A, 2001, vol. 105, p. 6703.CrossRefGoogle Scholar
  58. 58.
    Padmanabhan, J., Parthasarathi, R., Subramanian, V., and Chattaraj, P.K., J. Phys. Chem. A, 2006, vol. 110, p. 2739.PubMedCrossRefGoogle Scholar
  59. 59.
    Ciofini, I., Hazebroucq, S., Joubert, L., and Adamo, C., Theor. Chem. Acc., 2004, vol. 111, p. 188.Google Scholar
  60. 60.
    Mayr, H., Bug, T., Gotta, M.F., and Hering, N., J. Am. Chem. Soc., 2001, vol. 123, p. 9500.PubMedCrossRefGoogle Scholar
  61. 61.
    Legon, A.C., Chem. Commun., 1998, p. 2585.Google Scholar
  62. 62.
    Perez, P., Toro-Labbe, A., Aizman, A., and Contreras, R., J. Org. Chem., 2002, vol. 67, p. 4747.PubMedCrossRefGoogle Scholar
  63. 63.
    Minegishi, S. and Mayr, H., J. Am. Chem. Soc., 2003, vol. 125, p. 286.PubMedCrossRefGoogle Scholar
  64. 64.
    Pérez, P., Aizman, A., and Contreras, R., J. Phys. Chem. A, 2002, vol. 106, p. 3964.CrossRefGoogle Scholar
  65. 65.
    Pérez, P., Simon-Manso, Y., Aizman, A., Fuentealba, P., and Contreras, R., J. Am. Chem. Soc., 2000, vol. 122, p. 4756.CrossRefGoogle Scholar
  66. 66.
    Pérez, P., Toro-Labbe, A., and Contreras, R., J. Phys. Chem. A, 2000, vol. 104, p. 11993.CrossRefGoogle Scholar
  67. 67.
    Pérez, P., Contreras, R., and Aizman, A., J. Mol. Struct. (Theochem), 1999, vol. 493, p. 267.CrossRefGoogle Scholar
  68. 68.
    Chamorro, E., Escobar, C.A., Sienra, R., and Pérez, P., J. Phys. Chem. A, 2005, vol. 109, p. 10068.PubMedCrossRefGoogle Scholar
  69. 69.
    Galabov, B., Cheshmedzhieva, D., Ilieva, S., and Hadjieva, B., J. Phys. Chem. A, 2004, vol. 108, p. 11457.CrossRefGoogle Scholar
  70. 70.
    Murray, J.S. and Politzer, P., J. Mol. Struct. (Theochem), 1998, vol. 425, p. 107.CrossRefGoogle Scholar
  71. 71.
    Eshermann, B., Martin, B., Horn, A.H.C., and Clark, T., J. Mol. Model., 2003, vol. 9, p. 342.CrossRefGoogle Scholar
  72. 72.
    Katritzky, A.R., Fara, D.C., Petrukhin, R.O., Tatham, D.B., Maran, U., Lomaka, A., and Karelson, M., Curr. Top. Med. Chem., 2002, vol. 2, p. 1333.PubMedCrossRefGoogle Scholar
  73. 73.
    Karelson, M., Lobanov, V.S., and Katritzky, A.R., Chem. Rev., 1996, vol. 96, p. 1027.PubMedCrossRefGoogle Scholar
  74. 74.
    Katritzky, A.R., Fara, D.C., Yang, H., Tamm, K., Tamm, T., and Karelson, M., Chem. Rev., 2004, vol. 104, p. 175.PubMedCrossRefGoogle Scholar
  75. 75.
    Toropov, A.A., Kudishkin, V.O., Voropaeva, N.L., Ruban, I.N., and Rashidova, S.Sh., Zh. Strukt. Khim., 2004, vol. 45, p. 994.Google Scholar
  76. 76.
    Hiob, R. and Karelson, M., J. Comput. Chem., 2002, vol. 26, p. 237.CrossRefGoogle Scholar
  77. 77.
    Katritzky, A.R., Lobanov, V.S., and Karelson, M., Chem. Soc. Rev., 1995, p. 279.Google Scholar
  78. 78.
    Guthrie, J.P., Can. J. Chem., 2005, vol. 83, p. 1.CrossRefGoogle Scholar
  79. 79.
    Gao, J. and Truhlar, D.G., Annu. Rev. Phys. Chem., 2002, vol. 53, p. 467.PubMedCrossRefGoogle Scholar
  80. 80.
    Truhlar, D.G., Gao, J.L., Alhambra, C., Garcia-Villa, M., Corchado, J., Sanchez, M.L., and Villa, J., Acc. Chem. Res., 2002, vol. 35, p. 341.PubMedCrossRefGoogle Scholar
  81. 81.
    Gao, J., Acc. Chem. Res., 1996, vol. 29, p. 298.CrossRefGoogle Scholar
  82. 82.
    Shigeta, Y., Int. J. Quantum Chem., 2004, vol. 96, p. 32.CrossRefGoogle Scholar
  83. 83.
    Santiso, E.E. and Gubbins, K.E., Mol. Simul., 2004, vol. 30, p. 699.MATHCrossRefGoogle Scholar
  84. 84.
    Hiller, I.H., J. Mol. Struct. (Theochem), 1999, vol. 463, p. 45.CrossRefGoogle Scholar
  85. 85.
    Kairys, V. and Jensen, J.H., J. Phys. Chem. A, 2000, vol. 104, p. 6656.CrossRefGoogle Scholar
  86. 86.
    Sauer, J. and Sierka, M., J. Comput. Chem., 2000, vol. 21, p. 1470.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • Yu. E. Zevatskii
    • 1
  • D. V. Samoilov
    • 1
  1. 1.St. Petersburg State Institute of TechnologySt. PetersburgRussia

Personalised recommendations