Russian Journal of Organic Chemistry

, Volume 43, Issue 2, pp 231–240 | Cite as

Thermal and acid-catalyzed transformations of 3H-pyrazoles obtained from diphenyldiazomethane and methyl phenylpropiolate

  • A. A. Fedorov
  • Sh. E. Duisenbaev
  • V. V. Razin
  • M. A. Kuznetsov
  • E. Linden
Article

Abstract

Reaction of diphenyldiazomethane with methyl phenylpropiolate in diethyl ether alongside the expected methyl triphenyl-3H-pyrazole-4-and-5-carboxylates (I and II) (38 and 24%) gave rise also to 8% of methyl 3,5-diphenyl-1-(1-ethoxyethyl)-1H-pyrazole-4-carboxylate. The main thermolysis product obtained from 4-methoxy-carbonyl derivative I was methyl 1,3,5-triphenyl-1H-pyrazole-4-carboxylate, whereas from regioisomer II formed predominantly methyl 4,4,5-triphenyl-4H-pyrazole-3-carboxylate and 1-methoxycarbonyl-2,3,3-triphenylcyclopropene that was a minor product of 3H-pyrazole I thermolysis. Addition of concn. H2SO4 to the solutions of methyl triphenyl-3H-pyrazole-4-and-5-carboxylates in AcOH resulted in fast regioselective isomerization of the 3H-pyrazole derivatives into the corresponding 4H-pyrazoles.

Keywords

Pyrazole Azole Thermolysis Thermolysis Product Anhydrous Ethyl Ether 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van Alphen, J., Rec. Trav. Chim., 1943, vol. 62, p. 491.CrossRefGoogle Scholar
  2. 2.
    Huttel, R., Franke, K., Martin, H., Riedl, J., Chem. Ber., 1960, vol. 93, p. 1433.Google Scholar
  3. 3.
    Woodward, R. B. and Hoffmann, R., The Conservation of Orbital Symmetry, New York: Academic, 1970.Google Scholar
  4. 4.
    Spangler, C.W., Chem. Rev., 1976, vol. 76, p. 187; Bekmukhametov, R.R., Sovr. Problemy Org. Khim., Izd. Leningrad. Gos. Univ., 1976, vol. 5, p. 105; Sammes, M.P. and Katritzky, A.R., Adv. Heterocycl. Chem., 1983, vol. 34, p. 1.CrossRefGoogle Scholar
  5. 5.
    Bramley, R.K., Grigg, R., Guilford, G., and Milner, P., Tetahedron, 1973, vol. 29, p. 4159.CrossRefGoogle Scholar
  6. 6.
    Frampton, C.S., Majchrzak, M.W., and Warkentin, J., Canad. J. Chem., 1991, vol. 69, p. 373.CrossRefGoogle Scholar
  7. 7.
    Yen, Y.P., Chen, S.F., Heng, Z.C., Huang, J.C., Kao, L.C., Lai, C.C. and Liu, R.S.H., Heterocycles, 2001, vol. 55, p. 1859.Google Scholar
  8. 8.
    Van Alphen, J., Rec. Trav. Chim., 1943, vol. 62, p. 485.CrossRefGoogle Scholar
  9. 9.
    Hüttel, R., Riedl, J., Martin, H., and Franke, K., Chem. Ber., 1960, vol. 93, p. 1425.Google Scholar
  10. 10.
    Abbott, P.J., Acheson, R.M., Flowerday, R.F., and Brown, G.W., J. Chem. Soc., Perkin, Trans. 1, 1974, p. 1177.Google Scholar
  11. 11.
    Komendantov, M.I. and Bekmukhametov, R.R., Khim. Geterotsikl. Soedin., 1975, p. 79.Google Scholar
  12. 12.
    Aspart-Pascot, L. and Bastide, M.J., C.r., 1971, vol. 273C, p. 1772.Google Scholar
  13. 13.
    Leach, C.L. and Wilson, J.W., J. Org. Chem., 1978, vol. 43, p. 4880.CrossRefGoogle Scholar
  14. 14.
    Sharp, J.T., Findlay, R.H., and Thorogood, P.B., J. Chem. Soc., Perkin, Trans. 1, 1975, p. 102.Google Scholar
  15. 15.
    Domnin, I.N., Zhuravleva, E.F., Serebrov, V.L., and Bekmukhametov, R.R., Khim. Geterotsikl. Soedin., 1978, p. 1091; Padwa, A. and Kennedy, G.D., J. Org. Chem., 1984, vol. 49, p. 4344.Google Scholar
  16. 16.
    Johnson, C.K., ORTEPII Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1976.Google Scholar
  17. 17.
    Razin, V.V. and Gupalo, V.I., Zh. Org. Khim., 1974, vol. 10, p. 2342.Google Scholar
  18. 18.
    Fliege, W., Huisgen, R., Clovis, J.S., and Knupfer, H., Chem. Ber., 1983, vol. 116, p. 3062.Google Scholar
  19. 19.
    Razin, V.V., Zh. Org. Khim., 1975, vol. 11, p. 1457.Google Scholar
  20. 20.
    Coutouli-Argyropoulou, E. and Thessalonikeos, E., J. Heterocycl. Chem., 1991, vol. 28, p. 1945.CrossRefGoogle Scholar
  21. 21.
    Leigh, W.J. and Arnold, D.R., Canad. J. Chem., 1979, vol. 57, p. 1186.CrossRefGoogle Scholar
  22. 22.
    Dürr, H. and Schmidt, W., Lieb. Ann., 1974, p. 1140; Heydt, H. and Regitz, M., Lieb. Ann., 1977, p. 1766; Schiess, P. and Stalder, H., Tetrahedron Lett., 1980, vol. 21, p. 1413.Google Scholar
  23. 23.
    Dewar, M. and Dougherti, R., The PMO Theory of Organic Chemistry, New York: Premium Press, 1975Google Scholar
  24. 24.
    Replogle, K.S. and Carpenter, B.K., J. Am. Chem. Soc., 1984, vol. 106, p. 5751.CrossRefGoogle Scholar
  25. 25.
    Dürr, H., Schmidt, W., and Sergio, R., Lieb. Ann., 1974, p. 1132.Google Scholar
  26. 26.
    Mataka, S., Takahashi, K., Ohshima, T., and Tashiro, M., Chem. Lett., 1980, p. 915; Mataka, S. and Tashiro, M., J. Org. Chem., 1981, vol. 46, p. 1929; Mataka, S., Ohshima, T., and Tashiro, M., J. Org. Chem., 1981, vol. 46, p. 3960; Burger, W., Große, M., and Rewicki, D., Chem. Ber., 1982, vol. 115, p. 309; Padwa, A. and Goldstein, S.I., Canad. J. Chem., 1984, vol. 62, p. 2506.Google Scholar
  27. 27.
    Nakano, Y., Hamaguchi, M., and Nagai, T., J. Org. Chem., 1989, vol. 54, p. 5912.CrossRefGoogle Scholar
  28. 28.
    Closs, G.L. and Boll, W.A., Angew. Chem., Int. Ed., 1963, vol. 2, p. 399; Franck-Neumann, M. and Buchecker, C., Tetrahedron Lett., 1969, p. 15; Day, A.C. and Inwood, R.N., J. Chem. Soc. C, 1969, p. 1065; Schrader, L., Chem. Ber., 1971, vol. 104, p. 941; Baron, W.J., Hendrick, M.E., and Jones, M., J. Am. Chem. Soc., 1973, vol. 95, p. 6286.Google Scholar
  29. 29.
    Miller, J.B., J. Org. Chem., 1959, vol. 24, p. 560.CrossRefGoogle Scholar
  30. 30.
    Borsche, W. and Hahn, H., Lieb. Ann., 1939, vol. 537, p. 219.CrossRefGoogle Scholar
  31. 31.
    Hooft, R., KappaCCD Collect Software Nonius BV Delft, The Nederlands, 1999.Google Scholar
  32. 32.
    Macromolecular Crystallography, Part A., Carter, C.W. Jr. and Sweet, R.M., New York: Academic, Press, 1997, p. 307.Google Scholar
  33. 33.
    Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M.C., Polidori, G., and Camalli, M., SIR92. J. Appl. Crystallogr., 1994, vol. 27, p. 435.CrossRefGoogle Scholar
  34. 34.
    Maslen, E.N., Fox, A.G., and O’Keefe, M.A., in Intern. Tables for Crystallography, Wilson, A.J.C., Ed., Dordrecht: Kluwer Academic Publ., 1992.Google Scholar
  35. 35.
    Stewart, R.F., Davidson, E.R., and Simpson, W.T., J. Chem. Phys., 1965, vol. 42, p. 3175.CrossRefGoogle Scholar
  36. 36.
    Ibers, J.A. and Hamilton, W.C., Acta Crystallogr., 1964, vol. 17, p. 781.CrossRefGoogle Scholar
  37. 37.
    Creagh, D.C. and McAuley, W.J., in Intern. Tables for Crystallography, Wilson, A.J.C., Ed., Dordrecht: Kluwer Academic Publ., 1992.Google Scholar
  38. 38.
    Creagh, D.C., Hubbell, J.H., in Intern. Tables for Crystallography, Wilson, A.J.C., Ed., Dordrecht: Kluwer Academic Publ., 1992.Google Scholar
  39. 39.
    Sheldrick, G.M., SHELXL97. Program for the Refinement of Crystal Structures, Germany: University of Gottingen, 1997.Google Scholar
  40. 40.
    Parham, W.E. and Hasek, W.R., J. Am. Chem. Soc., 1954, vol. 76, p. 935.CrossRefGoogle Scholar
  41. 41.
    Nagy, J., Nyitrai, J., Kolonits, P., Lempert, K., and Gergely, A., et al., J. Chem. Soc., Perkin Trans. 1, 1988, p. 3267.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • A. A. Fedorov
    • 1
  • Sh. E. Duisenbaev
    • 1
  • V. V. Razin
    • 1
  • M. A. Kuznetsov
    • 1
  • E. Linden
    • 2
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institut fur Organische ChemieUniversitat ZurichZurichSwitzerland

Personalised recommendations