Russian Journal of Organic Chemistry

, Volume 42, Issue 9, pp 1368–1373 | Cite as

Synthesis of monomeric and oligomeric 1,1′-methylenebis-(1H-pyrazoles) contaning ethynyl fragments

  • A. S. Potapov
  • A. I. Khlebnikov
  • S. F. Vasilevskii
Article

Abstract

1,1′-Methylenebis(1H-pyrazole) and 1,1′-methylenebis(3,5-dimethyl-1H-pyrazole) reacted with iodine in the presence of iodic acid to give the corresponding 4,4′-diiodo derivatives. Polycondensation of the latter with p-diethynylbenzene led to the formation of oligomeric compounds. 1,1′-Methylenebis(4-iodo-1H-pyrazoles) were converted into 4,4′-diethynyl derivatives by the Sonogashira and reverse Favorskii reactions, and their oxidative polycondensation in the presence of copper(I) chloride in pyridine also gave oligomeric products with a molecular weight exceeding 9000.

Keywords

Copper Chloride Molecular Weight Organic Chemistry Iodine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pettinari, C. and Pettinari, R., Coord. Chem. Rev., 2005, vol. 249, p. 663.CrossRefGoogle Scholar
  2. 2.
    Pomogailo, A.D. and Uflyand, I.E., Ros. Khim. Zh., 1996, vol. 40, nos. 4–5, p. 55.Google Scholar
  3. 3.
    Merkushev, E.B., Synthesis, 1988, p. 923.Google Scholar
  4. 4.
    Sonogashira, K., Tohda, Y., and Hagihara, N., Tetrahedron Lett., 1975, vol. 50, p. 4467; Sonogashira, K., J. Organomet. Chem., 2002, vol. 653, p. 46.CrossRefGoogle Scholar
  5. 5.
    Rusanov, A.L., Khotina, I.A., and Begretov, M.M., Usp. Khim., 1997, vol. 66, p. 1162.Google Scholar
  6. 6.
    Bunz, U., Chem. Rev., 2000, vol. 100, p. 1605.CrossRefGoogle Scholar
  7. 7.
    Kotlyarevskii, I.L., Shvartsberg, M.S., Vasilevskii, S.F., and Andrievskii, V.N., Izv. Akad. Nauk SSSR, Ser. Khim., 1966, p. 302.Google Scholar
  8. 8.
    Vasilevskii, S.F. and Shvartsberg, M.S., Izv. Akad. Nauk SSSR, Ser. Khim., 1980, p. 1071.Google Scholar
  9. 9.
    Shvartsberg, M.S., Ivanchikova, I.D., and Vasilevskii, S.F., Izv. Ross. Akad. Nauk, Ser. Khim., 1998, p. 2027.Google Scholar
  10. 10.
    Ciana, D. and Haim, L., J. Heterocycl. Chem., 1984, vol. 21, p. 607.CrossRefGoogle Scholar
  11. 11.
    Byers, P., Canty, A., Honeyman, T., Claramunt, R., Lopez, C., Lavandera, J., and Elguero, J., Gazz. Chim. Ital., 1992, vol. 122, p. 341; Levy, G.C. and Nelson, G.L., Carbon-13 Nuclear Magnetic Resonance for Organic Chemists, New York: Wiley, 1972. Translated under the title Rukovodstvo po yadernomu magnitnomu rezonansu ugleroda-13 dlya khimikov-organikov, Moscow: Mir, 1975, p. 125Google Scholar
  12. 12.
    Potapov, A.S. and Khlebnikov, A.I., Izv. Vyssh. Uchebn Zaved., Ser. Khim. Khim. Tekhnol., 2003, no. 7, p. 66.Google Scholar
  13. 13.
    Physical Methods in Heterocyclic Chemistry, Katritzky, A.R., Ed., New York: Academic, 1963, p. 533.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. S. Potapov
    • 1
  • A. I. Khlebnikov
    • 1
  • S. F. Vasilevskii
    • 2
  1. 1.Polzunov Altai State Technical UniversityBarnaulRussia
  2. 2.Institute of Chemical Kinetics and Combustion, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations