Dielectric Spectroscopy of Vegetable Oils


The dielectric properties of flaxseed, sunflower, mustard, rapeseed, and olive oils were studied in the temperature range 25–70˚C and in the frequency range of the electric field 25 Hz–1 MHz. A mechanism for the hardening of vegetable oils is proposed according to temperature-dielectric spectroscopy. The hardening of oils is interpreted as a combination of crystallization processes of triglycerides of saturated fatty acids and glass transition processes of triglycerides of unsaturated fatty acids. The glass transition temperature should be considered the true pour point, which allows setting the low temperature limit of the operability of vegetable oils as insulating liquids. Linear correlations between physicochemical, dielectric properties, and fatty acid composition of oils were established. The data presented can be used to assess the quality of vegetable oils, identify falsifications and to obtain oils with a balanced composition of fatty acids. The data derived can also be utilized in the selection of oils as oleochemical raw materials and for the development of compositions of electrical insulating liquids.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    Shah, Z.H. and Tahir, Q.A., J. Sci. Res., 2011, vol. 3, no. 3, pp. 481–492. https://doi.org/10.3329/jsr.v3i3.7049

    CAS  Article  Google Scholar 

  2. 2

    Corach, J., Sorichetti, P.A., and Romano, S.D., Int. J. Hydrogen Energy, 2014. V 39, no. 16, pp. 8754–8758. https://doi.org/10.1016/j.ijhydene.2013.12.036

    CAS  Article  Google Scholar 

  3. 3

    Mohamad, N.A., Azis, N., Jasni, J., Ab Kadir, M.Z.A., Yunus, R., Ishak, M.T., and Yaakub, Z., J. Electrical Eng. Technol., 2016, no. 3, vol. 11, pp. 690–698. https://doi.org/10.5370/JEET.2016.11.3.690

    Article  Google Scholar 

  4. 4

    Azmi, K., Ahmad, A., and Kamarol, M., J. Electrical Eng. Technol., 2015, vol. 10, no. 5, pp. 2105–2119. https://doi.org/10.5370/JEET.2015.10.5.2105

    Article  Google Scholar 

  5. 5

    Angeline, D.R.P., Valantina, S.R., and Kumar, V.M., Int. J. Food Properties, 2017, vol. 20, no. 11, pp. 2805–2816. https://doi.org/10.1080/10942912.2016.1252921

    CAS  Article  Google Scholar 

  6. 6

    Turky, G.M. and El-Adly, R.A., J. Molec. Liquids, 2017, no. 242, pp. 1–7. https://doi.org/10.1016/j.molliq.2017.06.126

    CAS  Article  Google Scholar 

  7. 7

    Ragni, L., Iaccheri, E., Cevoli, C., Berardinelli, A., Bendini, A., and Toschi, T.G., J. Food Eng., 2013, vol. 116, no. 1, pp. 246–252. https://doi.org/10.1016/j.jfoodeng.2012.10.031

    CAS  Article  Google Scholar 

  8. 8

    Kumar, D., Singh, A., and Tarsikka, P.S., J. Food Sci. Technol.-Mysore, 2013, vol. 50, no. 3, pp. 549–554. https://doi.org/10.1007/s13197-011-0346-8

    CAS  Article  Google Scholar 

  9. 9

    Prevc, T., Cigic, B., Vidrih, R., Ulrih, N.P., and Segatin, N., J. Agricultural Food Chem., 2013, vol. 61, no. 47, pp. 11355–11362. https://doi.org/10.1021/jf402943b

    CAS  Article  Google Scholar 

  10. 10

    Baida, A.A., Rudakova, A.V., and Agaev, S.G., Russ. J. Phys. Chem. A, 2013.V. 87, no. 2, pp. 240–244. https://doi.org/10.1134/s0036024413020076

    Article  Google Scholar 

  11. 11

    Baida, A.A., Rudakova, A.V., and Agaev, S.G., Russ. J. Phys. Chem. A, 2013, vol. 87, no. 4, pp. 645–648. https://doi.org/10.1134/s0036024413040031

    CAS  Article  Google Scholar 

  12. 12

    Mattson, F.H. and Lutton, E.S., J. Biol. Chem., 1958, no. 4, vol. 233, pp. 868–871.

    Google Scholar 

  13. 13

    Foster, R., J. Compilation. British Nutrition Foundation Nutrition Bull., 2009, no. 34, pp. 4–47.

    Article  Google Scholar 

  14. 14

    Sakhno, L.O., Cytology and Genetics, 2010, no. 6, vol. 44, pp. 389–397.

    Article  Google Scholar 

  15. 15

    Skanavi, G.I., Fizika dielektrikov (oblast’ slabykh polei) [Physics of Dielectrics (Region of Weak Fields)], Moscow: Gos. Izd Tekhn.-Teoret. Lit., 1949.

    Google Scholar 

  16. 16

    Ulrych, J. and Mentlik, V., 17th Int. Scientific Conf. on Electric Power Engineering (EPE), Prague, 2016.

  17. 17

    Yang, J., Zhao, K.S., and He, Y.J., J. Food Eng., 2016, vol. 180, no. 47, pp. 69–76. https://doi.org/10.1016/j.jfoodeng.2016.02.012

    CAS  Article  Google Scholar 

  18. 18

    Sonkamble, A.A., Sonsale, R.P., Kanshette, M.S., Kabara, K.B., Wananje, K.H., Kumbharkhane, A.C., and Sarode, A.V., Eur. Biophys. J. Biophys. Lett., 2017, vol. 46, no. 3, pp. 283–291. https://doi.org/10.1007/s00249-016-1165-7

    CAS  Article  Google Scholar 

  19. 19

    Agaev, S.G., Sheveleva, M.G., and Shabrova, L.A., KhTTM., 1990, vol. 26, no. 11, pp. 600–603. https://doi.org/10.1007/bf00725905

    Article  Google Scholar 

  20. 20

    Agaev, S.G. and Deryugina, O.P., Izv. Vuzov. Neft’ Gaz., 1991, no. 8, pp. 45–49.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to O. O. Maiorova.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Agaev, S.G., Baida, A.A., Georgiev, O.V. et al. Dielectric Spectroscopy of Vegetable Oils. Russ J Appl Chem 93, 748–756 (2020). https://doi.org/10.1134/S107042722005016X

Download citation


  • vegetable oils
  • electrical insulating oils
  • dielectric spectroscopy
  • the dielectric constant
  • dielectric loss
  • fatty acid composition