Synthesis of Mesoporous Silica Gel Doped with Dysprosium and Modified with Nickel and Study of Its Selectivity in the Catalytic Hydrogenation of a Benzene and Its Derivatives

Abstract

The work studied the hydrogenation of benzene and its derivatives on the mesoporous silica gel synthesized by the template method, doped with dysprosium and modified with nickel nanoparticles. The surface morphology and texture characteristics of the obtained sample were studied by scanning and transmission electron microscopy, X-ray phase analysis, and inductively coupled plasma mass spectrometry. The catalytic activity and selectivity of the obtained catalyst in the hydrogenation reaction of a mixture with an equal content of benzene, ethylbenzene, p-, o-xylenes in the temperature range of 100–170°С at a pressure of 3 atm was studied. It was found that the obtained catalyst selectively hydrogenates benzene in a mixture with its derivatives to cyclohexane.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    Konuspayev, S.R., Shaimardan, M., Nurbaeva, D.R., Auezov, A.B., and Boronin, A.I., Petrol. Chem., 2010, vol. 50, no. 1, pp. 47–50. https://doi.org/10.1134/S0965544110010068

    Article  Google Scholar 

  2. 2

    Shutkina, O.V., Ponomareva, O.A., Kots, P.A., and Ivanova, I.I., Catal. Today, 2013, vol. 218, pp. 30–34. https://doi.org/10.1016/j.cattod.2013.05.017

    CAS  Article  Google Scholar 

  3. 3

    Liu, Y., Ai, K., and Lu, L. , Chem. Rev., 2014, vol. 114, pp. 5057–5115. https://doi.org/10.1021/cr400407a

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Zhang, Q., Yan, X., Zheng, P., and Wang, Z., Chinese J. Chem. Eng., 2017, vol. 25, pp. 294–300. https://doi.org/10.1016/j.cjche.2016.08.004

    CAS  Article  Google Scholar 

  5. 5

    Mohamed Isa, E.D., Mahmud, I.S., Ahmad, H., and Abdul Rahman, M.B., Ceram. Int., 2019, vol. 45, pp. 12149–12153. https://doi.org/10.1016/j.ceramint.2019.03.118

    CAS  Article  Google Scholar 

  6. 6

    Han, C., Hu, Y., Wang, K., Luo, G., Particuology, 2020, vol. 50, p. 173. https://doi.org/10.1016/j.partic.2019.06.003

    CAS  Article  Google Scholar 

  7. 7

    Zhang, L., Wang, A., Wang, W., Huang, Y., Liu, X., Miao, S., Liu, J., and Zhang, T., ACS Catal., 2015, vol. 5, pp. 6563–6572. https://doi.org/10.1021/acscatal.5b01223

    CAS  Article  Google Scholar 

  8. 8

    Woszuk, A., Panek, R., Madej, J., and Zofka, A., Construct. Building Mater., 2018, vol. 183, pp. 270–274. https://doi.org/10.1016/j.conbuildmat.2018.06.1770950-0618/2018

    CAS  Article  Google Scholar 

  9. 9

    Zhang, C., Zhao, P., Zhang, Z., Zhang, J., Yang, P., Gao, P., Gao, J., and Liu, D. , RSC Adv., 2017, vol. 7, pp. 47366–47372. https://doi.org/10.1039/C7RA09516C

    CAS  Article  Google Scholar 

  10. 10

    Sanjini, N.S. and Velmathi, S., RSC Adv., 2014, vol. 4, pp. 15381–15388. https:// doi.org/10.1039/C3RA46303F.

    CAS  Article  Google Scholar 

  11. 11

    Masoud, N., Delannoy, L., Schaink, H., van der Eerden, A., de Rijk, J.W., Silva, T., A.G., Banerjee, D., Meeldijk, J.D., de Jong, K.P., Louis, C., and de Jongh, P.E., ACS Catal., 2017, vol. 7, pp. 5594–5603. https://doi.org/10.1021/acscatal.7b01424

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Sun, Z., Li, H., Cui, G., Tian, Y., and Yan, S., Appl. Surface Sci., 2015, vol. 360, pp. 252–262. https://doi.org/10.1016/j.apsusc.2015.11.013

    CAS  Article  Google Scholar 

  13. 13

    Lehmann, T., Wolff, T., Hamel, C., Veit, P., Garke, B., and Seidel-Morgenstern, A. , Micropor. Mesopor. Mater., 2012, vol. 151, pp. 113–125. https://doi.org/10.1016/j.micromeso.2011.11.006

    CAS  Article  Google Scholar 

  14. 14

    Ambursa, M.M., Sudarsanam, P., Voon, L.H., Abd Hamid, Sharifah Bee, and Bhargava, S.K., Fuel Processing Technol., 2017, vol. 162, pp. 87–97. https://doi.org/10.1016/j.fuproc.2017.03.008

    CAS  Article  Google Scholar 

  15. 15

    Shafigulin, R.V., Filippova, E.O., •Shmelev, A.A., and Bulanova, A.V., Catal. Lett., 2019, vol. 149, pp. 916–928. https://doi.org/10.1007/s10562-019-02678-x

    CAS  Article  Google Scholar 

  16. 16

    Shafigulin, R.V., Filimonov, N.S., Filippova, E.O., Shmelev, A.A., and Bulanova, A.V. , Russ. J. Appl. Chem., 2017, vol. 90, pp. 1648–1654. https://doi.org/10.1134/S1070427217100147

    CAS  Article  Google Scholar 

  17. 17

    Krylov, O.V., Geterogennyi kataliz (Heterogeneous Catalysis), Moscow: IKTs Akademkniga, 2004.

    Google Scholar 

Download references

Funding

This work was financially supported by grant no. 4.5883.2017/8.9 (0777-2017-0005) and postgraduate grant of the Russian Foundation for Basic Research no. 19-33-90207.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. O. Filippova.

Ethics declarations

The authors declare that there is no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Filippova, E.O., Tokranov, A.A., Shafigulin, R.V. et al. Synthesis of Mesoporous Silica Gel Doped with Dysprosium and Modified with Nickel and Study of Its Selectivity in the Catalytic Hydrogenation of a Benzene and Its Derivatives. Russ J Appl Chem 93, 741–747 (2020). https://doi.org/10.1134/S1070427220050158

Download citation

Keywords:

  • selective hydrogenation of benzene
  • mesoporous silica gel
  • template synthesis