The Effect of Hexene-1 in Feedstock on the Yield of Target Products during Thermal Pyrolysis of n-Hexane

Abstract

The effect of the α-olefin addition in the pyrolysis feedstock on the yield of ethylene, propylene, and divinyl (butadiene-1,3) was studied using the n-hexane–hexene-1 model system under conditions of a laboratory flow-type thermal pyrolysis setup. It was found that the total yield of unsaturated hydrocarbons C2=–C4= depends on the ratio of n-hexane : hexene-1 in the initial mixture and is characterized by a maximum value at a 0.36 molar fraction of hexene-1 in feedstock. The main directions of reactions in the presence of an α-olefin are discussed.

This is a preview of subscription content, log in to check access.

Scheme
Scheme
Fig. 1.
Fig. 2.
Scheme

REFERENCES

  1. 1

    Amghizar, I., Laurien, A.V., Van Geem, K.M., and Marin, G.B., Engineering, 2017, vol. 3, no. 2, pp. 171–178. https://doi.org/10.1016/J.ENG.2017.02.006

    CAS  Article  Google Scholar 

  2. 2

    Levin, V.O., Potekhin, V.M., and Kudimova M.V., Neftepererab. Neftekhimiya, 2017, no. 6, pp. 28–36.

    Google Scholar 

  3. 3

    US Patent 3529032 (Publ. 1970). Cracking of Olefins.

  4. 4

    CN Patent 103788989 (Publ. 2014). Steam Cracking Method.

  5. 5

    CN Patent 103588608 (Publ. 2014). Butadiene Preparation Method.

  6. 6

    DE Patent 1233846 (Publ. 1967). Aprocess for the Thermal Cracking of Olefins.

  7. 7

    CN Patent 103788989 (Publ. 2012). A Kind of Steam Cracking Method.

  8. 8

    Shevelkova, L.V., Guselnikov, L.E., Bach, G., and Zimmermann, G., Russ. Chem. Rev., 1992, vol. 61, no. 4, pp. 433–445. https://doi.org/10.1070/RC1992v061n04ABEH000955

    Article  Google Scholar 

  9. 9

    Magaril, E.R. and Magaril, R.Z., Izv. Vuzov. Neft’ Gaz, 2018, no. 3, pp. 131–137. https://doi.org/10.31660/0445-0108-2018-3-131-137

  10. 10

    Yampol’skii, Yu.P., Elementarnye reaktsii i mekhanizm piroliza uglevodorodov (Elementary Reactions and the Mechanism of Hydrocarbon Pyrolysis), Moscow: Khimiya, 1990.

    Google Scholar 

  11. 11

    Magaril, R.Z., Mekhanizm i kinetika gomogennykh termicheskikh prevrashchenii uglevodorodov (The Mechanism and Kinetics of Homogeneous Thermal Transformations of Hydrocarbons), Moscow: Khimiya, 1970.

    Google Scholar 

  12. 12

    Levin, V.O., Potekhin, V.V., Potekhin, V.M., Kholodnov, V.A., Meshkov, A.V., Russ. J. Appl. Chem., 2019, vol. 92, no. 11, pp. 1537–1548. https://doi.org/10.1134/S1070427219110119

    CAS  Article  Google Scholar 

  13. 13

    Litvintsev, I.Yu. , Chem. J., 2006, no. 5, pp. 42–46.

    Google Scholar 

  14. 14

    Yang, F., Fuquan, D., Peng, Z., Erjiang, H., Yu, C., Zuohua, H., Energy & Fuels, 2016, vol. 30, no. 6, pp. 5130–5137. https://doi.org/10.1021/acs.energyfuels.5b02910

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. O. Levin.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Levin, V.O., Vasil’eva, K.P. & Potekhin, V.V. The Effect of Hexene-1 in Feedstock on the Yield of Target Products during Thermal Pyrolysis of n-Hexane. Russ J Appl Chem 93, 698–703 (2020). https://doi.org/10.1134/S1070427220050109

Download citation

Keywords:

  • thermal pyrolysis
  • ethylene
  • propylene
  • divinyl
  • lower olefins
  • n-hexane
  • hexene-1