Effect of Liquid-Phase Oxidative Treatments on the Purity, Hydrophilicity, and Structure of Single-Wall Carbon Nanotubes and on the Electrical Conductivity of Their Arrays

Abstract

A study using a set of physicochemical methods has shown that treatment of single-wall carbon nanotubes synthesized by the electric arc method with an aqueous solution of hydrogen peroxide (followed by treatment with hydrochloric acid) and with a mixture of concentrated nitric and sulfuric acids leads to a decrease in the content of inorganic impurities in the bulk of the finished materials. The acid oxidizing mixture shows the highest performance in the process, causing splitting of the bundles of single-wall carbon nanotubes into separate nanotubes and formation of stable concentrated suspensions of the nanotubes in water and in an isopropanol–water mixture. Both kinds of liquid-phase oxidative treatment enhance the electrical conductivity of the nanotube arrays and exert no pronounced selective effect on single-walled carbon nanotubes depending on the electronic conductivity of molecules of this material.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    Buyarskii, S.V., Uglerodnye nanotrubki: tekhnologiya, upravlenie svoistvami, primenenie (Carbon Nanotubes: Technology, Control of Properties, and Use), Ulyanovsk: Sterzhen, 2011.

    Google Scholar 

  2. 2

    Niyogi, S., Boukhalfa, S., Chikkannavar, S.B., McDonald, J., Heben, M.J., and Doorn, S.K., J. Am. Chem. Soc., 2007, vol. 129, pp. 1898–1899. https://doi.org/10.1021/ja068321j

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Fedotov, P.V., Tonkikh, A.A., Eremina, V.A., and Obraztsova, E.D., Abstracts of Papers, The Sixteenth Int. Conf. on the Science and Application of Nanotubes, Nagoya (Japan), 2015

  4. 4

    Makunin, A.A. and Chechenin, N.G., Polimer–nanouglerodnye kompozity dlya kosmicheskikh tekhnologii (Polymer–Nanocarbon Composites for Space Technologies), Moscow: Universitetskaya Kniga, 2011.

    Google Scholar 

  5. 5

    Koval’skaya, E.A., Kartel’, N.I., Prikhod’ko, G.P., and Sementsov, Yu.N., Khim. Fiz. Tekhnol. Poverkhn., 2012, vol. 3, no. 1, pp. 20–44.

    Google Scholar 

  6. 6

    Holzinger, M., Hirsch, A., Bernier, P., Duesberq, G.S., and Burgharhd, M., Appl. Phys. A, 2000, vol. 70, pp. 599–602. https://doi.org/10.1007/s003390051087

    CAS  Article  Google Scholar 

  7. 7

    Heller, D.A., Mayrhofer, R.M., Baik, S., Grinkova, Y.V., Usrey, M.L., and Strano, M.S., J. Am. Chem. Soc., 2004, vol. 126, pp. 14567–14573. https://doi.org/10.1021/ja046450z

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Voqqu, R., Rao, K.V., George, S.J., and Rao, C.N.R., J. Am. Chem. Soc., 2010, vol. 132, pp. 5560–5561. https://doi.org/10.1021/ja100190p

    CAS  Article  Google Scholar 

  9. 9

    Yang, Ch.-Mn., Park, J.S., An, K.H., Chu Lim, S., Seo, K., Kim, B., Park, K.A., Han, S., Park, Ch.Y., and Lee, Y.H., J. Phys. Chem. B, 2005, vol. 109, pp. 19242–19248. https://doi.org/10.1021/jp053245c

    CAS  Article  PubMed  Google Scholar 

  10. 10

    Berqeret, C., Cousseau, J., Fernandez, V., Mevellec, J.-V., and Lefrant, S., J. Phys. Chem. C, 2008, vol. 112, pp. 16411–16416. https://doi.org/10.1021/jp806602t

    CAS  Article  Google Scholar 

  11. 11

    Miyata, Ya., Maniwa, Ya., and Kataura, H., J. Phys. Chem. B: Letters, 2006, vol. 110, pp. 25–29. https://doi.org/10.1021/jp055692y

    CAS  Article  Google Scholar 

  12. 12

    Patent BY 20150113, Publ. 2018.

  13. 13

    Shulitskii, B.G., Tabulina, L.V., Rusal’skaya, T.G., Shaman, Yu.P., Komissarov, I., and Karoza, A.G., Russ. J. Phys. Chem. A, 2012, vol. 86. no. 10, pp. 1595–1601.

    CAS  Article  Google Scholar 

  14. 14

    Patent US 8592612B1, Publ. 2013.

  15. 15

    Kalugina, N.P., Glebovskaya, E.A., and Babaev, F.R., Infrakrasnaya spektroskopiya neftei i kondensatov (Infrared Spectroscopy of Crude Oils and Condensates), Ashkhabad, 1990, pp. 4–18.

    Google Scholar 

  16. 16

    Avramenko, V.N., Esel’son, M.P., and Zaika, A.A., Infrakrasnye spektry pishchevykh produktov (Infrared Spectra of Foodstuffs), Moscow: Pishchevaya Prom–st., 1974.

    Google Scholar 

  17. 17

    Kuhlmann, U., Jantoliak, H., Pfänder, N., Bernier, P., Jornet, C., and Thomsen, C., Chem. Phys. Lett., 1998, vol. 294, pp. 237–240. https://doi.org/10.1016/S0009-2614(98)00845-8

    CAS  Article  Google Scholar 

  18. 18

    Bergeret, C., Coussean, Ya., Fernandez, V., Mevellec, J.-Y., and Lefrant, S., J. Phys. Chem. C, 2008, vol. 112, pp. 16411–16416. https://doi.org/10.1021/jp806602t

    CAS  Article  Google Scholar 

  19. 19

    Kastner, J., Pichler, T., Kuzmany, H., Curran, S., Blau, W., Weldon, D.N., Delamesiere, M., Draper, S., and Zandbergen, H., Chem. Phys. Lett., 1994, vol. 221, pp. 53–58. https://doi.org/10.1016/0009-2614(94)87015-2

    CAS  Article  Google Scholar 

  20. 20

    Bahr, Ye.L., Yang, Ji., Kosynkin, D.V., Bronikowski, M.J., Smalley, R.E., and Tour, Ja.M., J. Am. Chem. Soc., 2001, vol. 123, pp. 6536–6542. https://doi.org/10.1021/ja010462s

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Vesali Naseh, M., Khodadadi, A.A., Mortazavi, Y.J., Alizadeh Sahraei, O., Pourfayaz, F., and Mosadegh Sedghi, S., J. Chem. Mol. Eng., 2009, vol. 3, no. 1, pp. 33–35.

    Google Scholar 

  22. 22

    Mawhinney, D.B., Naumenko, V., Kuznetsova, A., Yates, J.T., Liu, J., and Smalley, R.E., J. Am. Chem. Soc., 2000, vol. 122, pp. 2383–2384. https://doi.org/10.1021/ja994094s

    CAS  Article  Google Scholar 

  23. 23

    Plyusnina, I.I., Infrakrasnye spektry mineralov (Infrared Spectra of Minerals), Moscow: Mosk. Gos. Univ., 1977.

    Google Scholar 

  24. 24

    Sturgeon, R.E., Lam, Jo.W., Windust, A., Grinberg, P., Zeisler, R., Oflaz, R., Paul, R.L., Lang, B.E., Fagan, J.A., Simard, B., and Kingston, Ch.T., Anal. Bioanal. Chem., 2012, vol. 402, pp. 429–438. https://doi.org/10.1007/s00216-011-5509-y

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y., and Achiba, Y., Synth. Met., 1999, vol. 103, pp. 2555–2558. https://doi.org/10.1016/S0379-6779(98)00278-1

    CAS  Article  Google Scholar 

  26. 26

    Araujo, P.T., Maciel, I.O., Pesce, P.B.C., Pimenta, M.A., Doorn, S.K., Qian, H., Hartschuh, A., Steiner, M., Grigorian, L., Hata, K., and Jorio, A., Phys. Rev. B, 2008, vol. 77, no. 24, p. 241403. https://doi.org/10.1103/Phys.Rev.B.77.241403

    Article  Google Scholar 

  27. 27

    Hartman, A.Z., Jouzi, M., Barnett, R.L., and Xu, J.M., Phys. Rev. Lett., 2004, vol. 92, no. 23, p. 236804. https://doi.org/10.1103/Phys.Rev.Lett.92.236804

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Jorio, A., Souza, A.G., Dresselhaus, G., Dresselhaus, M.S., Swan, A.K., Ünlü, M.S., Goldberg, B.B., Pimenta, M.A., Hafner, J.H., Lieber, C.M., and Saito, R., Phys. Rev. B, 2002, vol. 65, no. 15, p. 155412. https://doi.org/10.1103/PhysRevB.65.155412

    CAS  Article  Google Scholar 

  29. 29

    Jiang, C., Kempa, K., Zhao, J., Schlecht, U., Kolb, U., Basche, T., Burghard, M., and Mews, A., Phys. Rev. B, 2002, no. 16, pp. 161404-1–161404-4. https://doi.org/10.1103/Phys.Rev.B.66.161404

    Article  Google Scholar 

  30. 30

    Monthioux, M., Smith, B.W., Burteaux, B., Claye, A., Fischer, J.E., Luzzi, D.E., Carbon, 2001, vol. 39, no. 8, pp. 1251–1272. https://doi.org/10.1016/S0008-6223(00)00249-9

    CAS  Article  Google Scholar 

  31. 31

    Pimenta, M.A., Hanlon, E.B., Marucci, A., Corio, P., Brown, S.D.M., Empedocles, S.A., Bawendi, M.G., Dresselhaus, G., and Dresselhaus, M.S., Braz. J. Phys., 2000, vol. 30, pp. 423–427. https://doi.org/10.1590/S0103-97332000000200026

    CAS  Article  Google Scholar 

  32. 32

    Kang, D., Hakamatsuka, M., Kojima, K., and Tachibana, M., Diamond Relat. Mater., 2010, vol. 19, nos. 5–6, pp. 578–580. https://doi.org/10.1016/j.diamond.2009.12.008

    CAS  Article  Google Scholar 

  33. 33

    Da Silva, A.M., Junqueira, G.M.A., Anconi, C.P.A., and Dos Santos, H.F., J. Phys. Chem. C, 2009, vol. 113, pp. 10079–10084. https://doi.org/10.1021/jp811012j

    CAS  Article  Google Scholar 

Download references

Funding

The studies performed by the authors from the Belarusian State University of Informatics and Radioelectronics were supported by the Belarusian Republican Foundation for Basic Research, contract no. FPLShG-009.

Studies performed by the authors from the Research and Production Complex Technological Center were financially supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the government assignment for the year 2019 (project no. 0N59-2019-0017).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to L. V. Tabulina or I. V. Komissarov.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Labunov, V.A., Tabulina, L.V., Komissarov, I.V. et al. Effect of Liquid-Phase Oxidative Treatments on the Purity, Hydrophilicity, and Structure of Single-Wall Carbon Nanotubes and on the Electrical Conductivity of Their Arrays. Russ J Appl Chem 93, 679–690 (2020). https://doi.org/10.1134/S1070427220050080

Download citation

Keywords:

  • single-walled carbon nanotubes
  • liquid-phase oxidative treatments
  • hydrophilicity of carbon nanotubes