Skip to main content
Log in

Biochar-Based Magnetic Nanocomposite for Dye Removal from Aqueous Solutions: Response Surface Modeling and Kinetic Study

  • Sorption and Ion Exchange Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

In this study, a biochar-based magnetic nanocomposite (BMNC) was synthesized and employed as adsorbent for Eriochrome Black T (EBT) removal from aqueous solutions. The biochar was prepared from oleaster stones and composited with iron oxide nanoparticles produced through chemical co-precipitation technique. The magnetic nanocomposite was characterized by X-ray diffraction analysis, Fourier transform infrared spectrometry, and scanning electron microscopy. The experiments were carried out using the Box-Behnken experimental design (BBD) with four input variables of adsorbent dosage (0.4–2.4 g L–1), solution pH (3–9), contact time (30–50 min), and ionic strength (0.02–0.1 M). An initial EBT concentration of 50 mg L–1 was taken as the fixed input parameter. Regression analysis resulted in a quadratic response surface model whose statistical significance was verified by analysis of variance. The model predicted the optimum conditions for EBT removal from aqueous solution (adsorbent dosage of 2.29 g L–1, pH 3.39, contact time of 48.6 min and ionic strength of 0.1 M) and removal efficiency of 98.11% was achieved. Results of the study showed that the dye adsorption onto the magnetic nanocomposite followed the pseudo-second order kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mohan, N., Balasubramanian, N., and Basha, C.A., J. Hazard. Mater., 2007, vol. 147, nos. 1–2, pp. 644–651.

    Article  CAS  PubMed  Google Scholar 

  2. Kadirvelu, K., Kavipriya, M., Karthika, C., Radhika, M., Vennilamani, N., and Pattabhi, S., J. Biores. Technol., 2003, vol. 87, no. 1, pp. 129–132.

    Article  CAS  Google Scholar 

  3. Dinçer, A.R., Günes, Y., Karakaya, N., and Günes, E., Biores. Technol., 2007, vol. 98, no. 4, pp. 834–839.

    Article  CAS  Google Scholar 

  4. Shen, D., Fan, J., Zhou, W., Gao, B., Yue, Q., and Kang, Q., J. Hazard. Mater., 2009, vol. 172, no. 1, pp. 99–107.

    Article  CAS  PubMed  Google Scholar 

  5. Wang, W., Ma, Y., Li, A., Zhou, Q., Zhou, W., and Jin, J., J. Hazard. Mater., 2015, vol. 294, p. 158.

    Article  CAS  PubMed  Google Scholar 

  6. Qadeer, R., Colloids Surf. A. Physicochem. Eng. Asp., 2007, vol. 293, nos. 1–3, pp. 217–223.

    Article  CAS  Google Scholar 

  7. Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., and Ok, Y.S., Chemosphere, 2014, vol. 99, pp. 19–33.

    Article  CAS  PubMed  Google Scholar 

  8. Tan, X.F., Liu, Y.G., Zeng, G., Wang, X., Hu, X., Gu, Y., and Yang, Z., Chemosphere, 2015, vol. 125, pp. 70–85.

    Article  CAS  PubMed  Google Scholar 

  9. Lehmann, J. and Joseph, S., Biochar for Environmental Management, Science and Technology, Routledge, 2012.

    Book  Google Scholar 

  10. Meyer, S., Glaser, B., and Quicker, P., Environ. Sci. Technol., 2011, vol. 45, no. 22, pp. 9473–9483.

    Article  CAS  PubMed  Google Scholar 

  11. Yao, Y., Gao, B., Chen, L., and Yang, L., Environ. Sci. Technol., 2013, vol. 47, no. 15, pp. 8700–8708.

    Article  CAS  PubMed  Google Scholar 

  12. Reddy, D.H.K. and Lee, S.M., Colloids Surf. A. Physicochem. Eng. Asp., 2014, vol. 454, pp. 96–103.

    Article  CAS  Google Scholar 

  13. Chen, B., Chen, Z., and Lv, S., Bioresour. Technol., 2011, vol. 102, no. 2, pp. 716–723.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, M., Gao, B., Varnoosfaderani, S., Hebard, A., Yao, Y., and Inyang, M., Bioresour. Technol., 2013, vol. 130, pp. 457–462.

    Article  CAS  PubMed  Google Scholar 

  15. Yan, L., Kong, L., Qu, Z., Li, L., and Shen, G., ACS Sustainable Chem. Eng., 2014, vol. 3, no. 1, pp. 125–132.

    Article  CAS  Google Scholar 

  16. Devi, P. and Saroha, A.K., Bioresour. Technol., 2014, vol. 169, pp. 525–531.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, S., Gao, B., Zimmerman, A.R., Li, Y., Ma, L., Harris, W.G., and Migliaccio, K.W., Bioresour. Technol., 2015, vol. 175, pp. 391–395.

    Article  CAS  PubMed  Google Scholar 

  18. Shang, J., Pi, J., Zong, M., Wang, Y., Li, W., and Liao, Q., J. Taiwan Inst. Chem. Eng., 2016, vol. 68, pp. 289–294.

    Article  CAS  Google Scholar 

  19. Box, G.E.P. and Draper, N.R., Empirical Model-Building and Response Surfaces, Wiley, Minnesota, 1987.

    Google Scholar 

  20. Myers, R.H. and Montgomery, D.C., Response Surface Methodology: Process and Product Optimization Using Designed Experiments, New York, John Wiley & Sons, Inc., 1995.

    Google Scholar 

  21. Bandari, F., Safa, F., and Shariati, Sh., Arab. J. Sci. Eng., 2015, vol. 40, no. 12, pp. 3363–3372.

    Article  CAS  Google Scholar 

  22. Sadaf, S. and Bhatti, H.N., Desalin. Water Treat., 2016, vol. 57, no. 25, pp. 11773–11781.

    Article  CAS  Google Scholar 

  23. Ehyaee, M., Safa, F., and Shariati, Sh., Korean J. Chem. Eng., 2017, vol. 34, no. 4, pp. 1051–1061.

    Article  CAS  Google Scholar 

  24. Gupta, V.K. and Suhas, J., Environ. Manage., 2009, vol. 90, no. 8, pp. 2313–2342.

    CAS  Google Scholar 

  25. Tripathi, P., Srivastava, V.C., and Kumar, A., Desalination, 2009, vol. 249, no. 3, pp. 1273–1279.

    Article  CAS  Google Scholar 

  26. Basu, P., Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory, 2nd ed., Academic Press, Burlington, 2013.

    Google Scholar 

  27. Gong, J.L., Wang, B., Zeng, G.M., Yang, C.P., Niu, C.G., Niu, Q.Y., Zhou, W.J., and Liang, Y., J. Hazard. Mater., 2009, vol. 164, no. 2–3, pp. 1517–1522.

    Article  CAS  PubMed  Google Scholar 

  28. Box, G.E.P. and Behnken, D.W., Technometrics, 1960, vol. 2, no. 4, pp. 455–475.

    Article  Google Scholar 

  29. Germán-Heins, J. and Flury, M., Geoderma, 2000, vol. 97, nos. 1–2, pp. 87–101.

    Article  Google Scholar 

  30. Ma, M., Zhang, Y., Yu, W., Shen, H.Y., Zhang, H.Q., and Gu, N., Colloids Surf. A. Physicochem. Eng. Asp., 2003, vol. 212, nos. 2–3, pp. 219–226.

    Article  CAS  Google Scholar 

  31. Stahle, L. and Wold, S., Chemom. Intell. Lab. Syst., 1989, vol. 6, no. 4, pp. 259–272.

    Article  Google Scholar 

  32. Solanki, A.B., Parikh, J.R., and Parikh, R.H., AAPS Pharm. Sci. Tech., 2007, vol. 8, no. 4, pp. 43–49.

    Article  Google Scholar 

  33. Yetilmezsoy, K., Demirel, S., and Vanderbei, R.J., J. Hazard. Mater., 2009, vol. 171, nos. 1–3, pp. 551–562.

    Article  CAS  PubMed  Google Scholar 

  34. Alberghina, G., Bianchini, R., Fichera, M., and Fisichella, S., Dyes Pigments, 2000, vol. 46, no. 3, pp. 129–137.

    Article  CAS  Google Scholar 

  35. Lagergren, S., Ksver. Veterskapsakad. Handl., 1898, vol. 24, pp. 1–6.

    Google Scholar 

  36. Ho, Y.S. and McKay, G., Process Biochem., 1999, vol. 34, no. 5, pp. 451–465.

    Article  CAS  Google Scholar 

  37. Weber, W.J. and Morris, J.C., J. Sanit. Engg. Div. ASCE, 1963, vol. 89, no. 2, pp. 31–60.

    Google Scholar 

  38. Kannan, K. and Sundaram, M.M., Sundaram, Dyes Pigments, 2001, vol. 51, no. 1, pp. 25–40.

    Article  CAS  Google Scholar 

  39. Allen, S.J., Mckay, G., and Khader, K.Y.H., Environ. Pollut., 1989, vol. 56, no. 1, pp. 39–50.

    Article  CAS  PubMed  Google Scholar 

  40. Poots, V.J.P., McKay, G., and Healy, J.J., J. Water Pollut. Control Fed., 1978, vol. 50, no. 5, pp. 926–935.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Safa.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbarnezhad, A.A., Safa, F. Biochar-Based Magnetic Nanocomposite for Dye Removal from Aqueous Solutions: Response Surface Modeling and Kinetic Study. Russ J Appl Chem 91, 1856–1866 (2018). https://doi.org/10.1134/S1070427218110174

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218110174

Keywords

Navigation