Skip to main content
Log in

Oxidative Functionalization of Asphaltenes from Heavy Crude Oil

  • Technological Production of New Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Sulfuric and nitric acids were used to functionalize asphaltenes isolated from heavy crude oil by treatment with heptane or hexamethyldisiloxane. The elemental composition of the asphaltenes was analyzed and their functional groups before and after the modification were identified. It was shown that the content of heteroatoms in the modified asphaltenes increases. Carbonyl, carboxyl, sulfonic, and nitro groups appear in the asphaltenes with the content dependent on the type of a modifier used and on the prehistory of how they were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ilyin, S.O. and Strelets, L.A., Energy Fuels, 2018, vol. 32, no. 1, pp. 268–278.

    Article  CAS  Google Scholar 

  2. Ilyin, S.O., Pakhmanova, O.A., Kostyuk, A.V., and Antonov, S.V., Petrol. Chem., 2017, vol. 57, no. 12, pp. 1141–1143.

    Article  CAS  Google Scholar 

  3. Ilyin, S., Arinina, M., Polyakova, M., Bondarenko, G., Konstantinov, I., Kulichikhin, V., and Malkin, A., J. Petrol. Sci. Eng., 2016, vol. 147, pp. 211–217.

    Article  CAS  Google Scholar 

  4. Mullins, O.C., Energy Fuels, 2010, vol. 24, no. 4, pp. 2179–2207.

    Article  CAS  Google Scholar 

  5. Mullins, O.C., Sabbah, H., Eyssautier, J., Pomerantz, A.E., Barré, L., Andrews, A.B., Ruiz-Morales, Y., Mostowfi, F., McFarlene, R., Goual, L., Lepkowicz, R., Cooper, T., Orbulescu, J., Leblanc, R.M., Edwards, J., and Zare, N., Energy Fuels. 2012, vol. 26, no. 7, pp. 3986–4003.

    Article  CAS  Google Scholar 

  6. Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S., and Lee, J.H., Prog. Polym. Sci., 2010, vol. 35, no. 11, pp. 1350–1375.

    Article  CAS  Google Scholar 

  7. Kim, H., Abdala, A.A., and Macosko, C.W., Macromolecules, 2010, vol. 43, no. 16, pp. 6515–6530.

    Article  CAS  Google Scholar 

  8. Sengupta, R., Bhattacharya, M., Bandyopadhyay, S., and Bhowmick, A.K., Prog. Polym. Sci., 2011, vol. 36, no. 5, pp. 638–670.

    Article  CAS  Google Scholar 

  9. Ilyin, S.O., Brantseva, T.V., Gorbunova, I.Y., Antonov, S.V., Korolev, Y.M., and Kerber, M.L., Int. J. Adhes. Adhes., 2015, vol. 61, pp. 127–136.

    Article  CAS  Google Scholar 

  10. Brantseva, T., Antonov, S., Kostyuk, A., Ignatenko, V., Smirnova, N., Korolev, Y., Tereshin, A., and Ilyin, S., Eur. Polym. J., 2016, vol. 76, pp. 228–244.

    Article  CAS  Google Scholar 

  11. Brantseva, T.V., Antonov, S.V., and Gorbunova, I.Y., Int. J. Adhes. Adhes., 2018, vol. 82, pp. 263–281.

    Article  CAS  Google Scholar 

  12. Karpukhina, E.A., Ilyin, S.O., Makarova, V.V., Meshkov, I.B., and Kulichikhin, V.G., Polym. Sci., Ser. A, 2014, vol. 56, no. 6, pp. 798–811.

    Article  CAS  Google Scholar 

  13. Ilyin, S.O., Polyakova, M.Y., Makarova, V.V., Meshkov, I.B., and Kulichikhin, V.G., Polym. Sci., Ser. A, 2016, vol. 58, no. 6, pp. 987–995.

    Article  CAS  Google Scholar 

  14. Georgakilas, V., Kordatos, K., Prato, M., Guldi, D.M., Holzinger, M., and Hirsch, A., J. Am. Chem. Soc., 2002, vol. 124, no. 5, pp. 760–761.

    Article  CAS  PubMed  Google Scholar 

  15. Ma, P.C., Siddiqui, N.A., Marom, G., and Kim, J.K., Composites, Part A, 2010, vol. 41, no. 10, pp. 1345–1367.

    Article  CAS  Google Scholar 

  16. Nakamura, E. and Isobe, H., Acc. Chem. Res., 2003, vol. 36, no. 11, pp. 807–815.

    Article  CAS  PubMed  Google Scholar 

  17. Georgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K.C., Hobza, P., Zboril, R., and Kim, K.S., Chem. Rev., 2012, vol. 112, no. 11, pp. 6156–6214.

    Article  CAS  PubMed  Google Scholar 

  18. Chen, D., Feng, H., and Li, J., Chem. Rev., 2012, vol. 112, no. 11, pp. 6027–6053.

    Article  CAS  PubMed  Google Scholar 

  19. Ma, P.C., Siddiqui, N.A., Marom, G., Kim, J.K., Composites, Part A, 2010, vol. 41, no. 10, pp. 1345–1367.

    Article  CAS  Google Scholar 

  20. Tasis, D., Tagmatarchis, N., Bianco, A., and Prato, M., Chem. Rev., 2006, vol. 106, no. 3, pp. 1105–1136.

    Article  CAS  PubMed  Google Scholar 

  21. Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., and Galiotis, C., Carbon, 2008, vol. 46, no. 6, pp. 833–840.

    Article  CAS  Google Scholar 

  22. Ilyin, S.O., Arinina, M.P., Polyakova, M.Y., Kulichikhin, V.G., and Malkin, A.Y., Fuel, 2016, vol. 186, pp. 157–167.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Ilyin.

Additional information

Original Russian Text © V.Ya. Ignatenko, Yu.V. Kostina, S.V. Antonov, S.O. Ilyin, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 11, pp. 1626−1632.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatenko, V.Y., Kostina, Y.V., Antonov, S.V. et al. Oxidative Functionalization of Asphaltenes from Heavy Crude Oil. Russ J Appl Chem 91, 1835–1840 (2018). https://doi.org/10.1134/S1070427218110149

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218110149

Keywords

Navigation