Skip to main content
Log in

Sodium–Tin System: Thermodynamic Properties of Alloys and Prospects for Using Tin and Its Alloys and Compounds in Sodium-Ion Batteries (Review)

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Data on thermodynamic properties of liquid sodium–tin alloys are summarized, analyzed, and compared, and thermodynamic properties of solid phases are estimated. The possibilities of using tin and its alloys and compounds as anode materials for sodium-ion batteries are briefly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Palomares, V., Serras, P., Villaluenga, I., et al., Energy Environ. Sci., 2012, vol. 5, pp. 5884–5901.

    Article  CAS  Google Scholar 

  2. Kim, S.-W., Seo, D.-H., Ma, X., et al., Adv. Energy Mater., 2012, vol. 2, pp. 710–721.

    Article  CAS  Google Scholar 

  3. Ellis, B.L. and Nazar, L.F., Curr. Opin. Solid State Mater. Sci., 2012, vol. 16, pp. 168–177.

    Article  CAS  Google Scholar 

  4. Slater, M.D., Kim, D., Lee, E., and Johnson, C.S., Adv. Funct. Mater., 2013, vol. 23, pp. 947–958.

    Article  CAS  Google Scholar 

  5. Pan, H., Hu, Y.-S., and Chen, L., Energy Environ. Sci., 2013, vol. 6, pp. 2338–2360.

    Article  CAS  Google Scholar 

  6. Yabuuchi, N., Kubota, K., Dahbi, M., and Komaba, S., Chem. Rev., 2014, vol. 114, pp. 11636–11682.

    Article  CAS  PubMed  Google Scholar 

  7. Hasa, I., Buchholz, D., Passerini, S., and Hassoun, J.A., ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 5206–5212.

    Article  CAS  PubMed  Google Scholar 

  8. Kulova, T.L. and Skundin, A.M., Elektrokhim. Energet., 2016, vol. 16, no. 1, pp. 122–150.

    Google Scholar 

  9. Kim Hy, Kim Ha, Ding, Z., et al., Adv. Energy Mater., 2016, vol. 6, paper 1600943, pp. 1–38.

    CAS  Google Scholar 

  10. Hwang, J.-Y., Myung, S.-T., and Sun, Y.-K., Chem. Soc. Rev., 2017, vol. 46, pp. 3529–3614.

    Article  CAS  PubMed  Google Scholar 

  11. Adelheim, P., Hartmann, P., Bender, C.L., et al., Beilstein J. Nanotechnol., 2015, vol. 6, pp. 1016–1056.

    Article  CAS  Google Scholar 

  12. Morachevskii, A.G., Russ. J. Appl. Chem., 2016, vol. 89, no. 7, pp. 1043–1953.

    Article  CAS  Google Scholar 

  13. Morachevskii, A.G. and Demidov, A.I., Termodinamika i elektrokhimiya sistem litii–khal’kogen i natrii–khal’kogen (Thermodynamics and Electrochemistry of Lithium–Chalcogen and Sodium–Chalcogen Systems), St. Petersburg: Politekh. Univ., 2017.

    Google Scholar 

  14. Morachevskii, A.G. and Demidov, A.I., Russ. J. Appl. Chem., 2017, vol. 90, no. 5, pp. 661–675.

    Article  CAS  Google Scholar 

  15. Pridatko, K.I. and Churikov, A.V., Elektrokhim. Energet., 2005, vol. 5, no. 1, pp. 16–29.

    CAS  Google Scholar 

  16. Kulova, T.L., Russ. J. Electrochem., 2013, vol. 49, no. 1, pp. 1–25.

    Article  CAS  Google Scholar 

  17. Skundin, A.M. and Kulova, T.L., Avtonomn. Energet., 2014, no. 34, pp. 21–28.

    Google Scholar 

  18. Schipper, F. and Aurbach, D., Russ. J. Electrochem., 2016, vol. 52, no. 12, pp. 1095–1121.

    Article  CAS  Google Scholar 

  19. Morachevskii, A.G., Russ. J. Appl. Chem., 2015, vol. 88, no. 7, pp. 1087–1105.

    Article  CAS  Google Scholar 

  20. Morachevskii, A.G. and Demidov, A.I., Termodinamika splavov litiya s elementami podgruppy ugleroda (C, Si, Ge, Sn, Pb) (Thermodynamics of Lithium Alloys with Carbon Subgroup Elements (C, Si, Ge, Sn, Pb)), St. Petersburg: Politekh. Univ., 2016.

    Google Scholar 

  21. Morachevskii, A.G., Shesterkin, I.A., Busse-Machukas, V.B., et al., Natrii. Svoistva, proizvodstvo, primenenie (Sodium. Properties, Production, and Use), Morachevskii, A.G., Ed., St. Petersburg: Khimiya, 1992.

  22. Sangster, J. and Bale, C.W., J. Phase Equil., 1998, vol. 19, no. 1, pp. 76–81.

    Article  CAS  Google Scholar 

  23. Wang, J., Miao, N., Chartrand, P., and Jung, I.-H., J. Chem. Thermodyn., 2013, vol. 66, no. 1, pp. 22–33.

    Article  CAS  Google Scholar 

  24. Yamamoto, T., Nohira, T., Hagiwara, R., et al., J. Power Sources, 2013, vol. 237, pp. 98–103.

    Article  CAS  Google Scholar 

  25. Morachevskii, A.G. and Lantratov, M.F., Zh. Obshch. Khim., 1959, vol. 29, no. 7, pp. 2109–2113.

    CAS  Google Scholar 

  26. Rivier, M. and Pelton, A.D., J. Electrochem. Soc., 1978, vol. 125, no. 9, pp. 1377–1382.

    Article  CAS  Google Scholar 

  27. Rais, A., Cusack, N.E., and Neale, F.E., J. Phys. F.: Met. Phys., 1982, vol. 12, pp. 1097–1100.

    Article  Google Scholar 

  28. Tamaki, S., Ishiguro, T., and Takeda, S., J. Phys. F.: Met. Phys., 1982, vol. 12, pp. 1613–1624.

    Article  CAS  Google Scholar 

  29. Alqasmi, R. and Egan, J.J., Ber. Bunsenges. Phys. Chem., 1983, vol. 87, no. 9, pp. 815–817.

    Article  CAS  Google Scholar 

  30. Iwase, M., Sugino, S., Ichise, E., and Waseda, Y., J. Chem. Thermodyn., 1985, vol. 17, pp. 601–609.

    Article  CAS  Google Scholar 

  31. Itoh, M. and Kozuka, Z., J. Mater. Sci., 1991, vol. 26, pp. 5221–5228.

    Article  CAS  Google Scholar 

  32. Morachevskii, A.G., Voronin, G.F., Geiderikh, V.A., and Kutsenok, I.B., Elektrokhimicheskie metody issledovaniya v termodinamike metallicheskikh sistem (Electrochemical Methods of Investigation in Thermodynamics of Metal Systems), Moscow: Akademkniga, 2003.

    Google Scholar 

  33. Morachevskii, A.G. and Sladkov, I.B., Termodinamicheskie raschety v metallurgii. Spravochnik (Thermodynamic Calculations in Metallurgy. Handbook), Moscow: Metallurgiya, 1993.

    Google Scholar 

  34. Morachevskii, A.G. and Firsova, E.G., Termodinamika zhidkikh metallov i splavov (Thermodynamics of Liquid Metals and Alloys), St. Petersburg: Lan’, 2016.

    Google Scholar 

  35. Morachevskii, A.G., Sladkov, I.B., and Firsova, E.G., Termodinamicheskie raschety v khimii i metallurgii (Thermodynamic Calculations in Chemistry and Metallurgy), St. Petersburg: Lan’, 2018.

    Google Scholar 

  36. Morachevskii, A.G. and Firsova, E.G., Russ. Metall. (Metally), 2017, no. 2, pp. 111–115.

    Article  Google Scholar 

  37. Yuan, D. and Kroger, F.A., J. Phys. Chem., 1969, vol. 73, pp. 2390–2392.

    Article  CAS  Google Scholar 

  38. Maiorova, E.A. and Morachevskii, A.G., Zh. Prikl. Khim., 1976, vol. 49, no. 11, pp. 2537–2539.

    CAS  Google Scholar 

  39. Saboungi, M.-L. and Corbin, T.P., J. Phys. F.: Met. Phys., 1984, vol. 14, no. 1, pp. 13–21.

    Article  CAS  Google Scholar 

  40. Lim, S.-K. and Muller, F., High Temp.–High Press., 1989, vol. 21, pp. 455–465.

    CAS  Google Scholar 

  41. Yassin, A. and Castanet, R., J. Alloys Compd., 2001, vol. 314, pp. 160–166.

    Article  CAS  Google Scholar 

  42. Ray, A.K. and Young, W.H., Phys. Chem. Liq., 1989, vol. 19, pp. 7–9.

    Article  CAS  Google Scholar 

  43. Michael, H.M. and Sahay, B.B., Phys. Status Solidi B, 1993, vol. 179, pp. 295–302.

    Article  Google Scholar 

  44. Akinlade, O., Phys. Chem. Liq., 1995, vol. 29, pp. 9–21.

    Article  CAS  Google Scholar 

  45. Moachevskii, A.G. and Maiorova, E.A., Russ. J. Appl. Chem., 1998, vol. 71, no. 8, pp. 1339–1342.

    Google Scholar 

  46. Fang, Q. and Wendt, H., J. Appl. Electrochem., 1996, vol. 26, pp. 343–352.

    Article  CAS  Google Scholar 

  47. Adhikari, D., Singh, B.P., and Jha, I.S., J. Mol. Liq., 2012, vol. 167, pp. 52–56.

    Article  CAS  Google Scholar 

  48. Satpathy, A. and Sengupta, S., Chem. Phys. Lett., 2017, vol. 667, pp. 187–191.

    Article  CAS  Google Scholar 

  49. Bale, C.W., Chartrand, P., Degterov, S.A., et al., CALPHAD, 2002, vol. 26, pp. 189–228.

    Article  CAS  Google Scholar 

  50. Van der Marel, C., van Oosten, A.V., Geerstma, W., and van der Lugt, W., J. Phys. F.: Met. Phys., 1982, vol. 12, pp. 2349–2361.

    Article  Google Scholar 

  51. Prigogine, I. and Defay, R., Chemical Thermodynamics, London: Longmans, 1954.

    Google Scholar 

  52. Morachevskii, A.G., Mokrievich, A.G., and Maiorova, E.A., Zh. Prikl. Khim., 1993, vol. 66, no. 7, pp. 1441–1447.

    CAS  Google Scholar 

  53. Crouch-Baker, S., Deublein, G., Tsai, H.-C., et al., Solid State Ionics, 1990, vol. 42, pp. 109–115.

    Article  CAS  Google Scholar 

  54. Chevier, V.L. and Ceder, G., J. Electrochem. Soc., 2011, vol. 158, pp. A1011–A1014.

    Article  CAS  Google Scholar 

  55. Kubota, K. and Komaba, S., J. Electrochem. Soc., 2015, vol. 162, pp. A2538–A2550.

    Article  CAS  Google Scholar 

  56. Li, Z., Ding, J., and Mitlin, D., Acc. Chem. Res., 2015, vol. 48, pp. 1657–1665.

    Article  CAS  PubMed  Google Scholar 

  57. Yamamoto, T., Nohiro, T., Hagiwara, R., et al., J. Power Sources, 2012, vol. 217, pp. 479–484.

    Article  CAS  Google Scholar 

  58. Ellis, L.D., Hatchard, T.D., and Obrovac, M.N., J. Electrochem. Soc., 2012, vol. 159, pp. A1801–A1805.

    Article  CAS  Google Scholar 

  59. Nam, D.-H., Hong, K.-S., Lim, S.-J., et al., J. Phys. Chem. C, 2014, vol. 118, pp. 20086–20093.

    Article  CAS  Google Scholar 

  60. Baggetto, L., Ganesh, P., Meisner, R.P., et al., J. Power Sources, 2013, vol. 234, pp. 48–59.

    Article  CAS  Google Scholar 

  61. Kim, C., Lee, K.-Y., Kim, I., et al., J. Power Sources, 2016, vol. 317, pp. 153–158.

    Article  CAS  Google Scholar 

  62. Wang, J.W., Liu, X.H., Mao, S.X., and Huang, J.Y., Nano Lett., 2012, vol. 12, pp. 5897–5902.

    Article  CAS  PubMed  Google Scholar 

  63. Komaba, S., Matsuura, Y., Ishikawa, T., et al., Electrochem. Commun., 2012, vol. 21, pp. 65–68.

    Article  CAS  Google Scholar 

  64. Dai, K., Zhao, H., Wang, Z., et al., J. Power Sources, 2014, vol. 263, pp. 276–279.

    Article  CAS  Google Scholar 

  65. Datta, M.K., Epur, R., Saha, P., et al. J. Power Sources, 2013, vol. 225, pp. 316–322.

    Article  CAS  Google Scholar 

  66. Xu, Y., Zhu, Y., Liu, Y., and Wang, C., Adv. Energy Mater., 2013, vol. 3, pp. 128–133.

    Article  CAS  Google Scholar 

  67. Oh, S.-M., Myung, S.-T., Jang, M.-W., et al., Phys. Chem. Chem. Phys., 2013, vol. 15, pp. 3827–3833.

    Article  CAS  PubMed  Google Scholar 

  68. Bresser, D., Mueller, F., Buchholz, D., et al., Electrochim. Acta, 2014, vol. 128, pp. 163–171.

    Article  CAS  Google Scholar 

  69. Liu, Y., Zhang, N., Jiao, L., and Chen, J., Adv. Mater., 2015, vol. 27, pp. 6702–6707.

    Article  CAS  PubMed  Google Scholar 

  70. Xie, X., Kretschmer, K., Zhang, J., et al., Nano Energy, 2015, vol. 13, pp. 208–217.

    Article  CAS  Google Scholar 

  71. Luo, B., Qiu, T., Ye, D., et al., Nano Energy, 2016, vol. 22, pp. 232–240.

    Article  CAS  Google Scholar 

  72. Zhu, H., Jia, Z., Chen, Y., et al., Nano Lett., 2013, vol. 13, pp. 3093–3100.

    Article  CAS  PubMed  Google Scholar 

  73. Wang, J., Eng, C., Chen-Wiegart, Y.K., and Wang, J. Nature Commun., 2015, vol. 6, paper 7496, pp. 1–8.

    Google Scholar 

  74. Darwiche, A., Sougrati, M.T., Fraisse, B., et al., Electrochem. Commun., 2013, vol. 32, pp. 18–21.

    Article  CAS  Google Scholar 

  75. Baggetto, L., Hah, H.-Y., Jumas, J.-C., et al., J. Power Sources, 2014, vol. 267, pp. 329–336.

    Article  CAS  Google Scholar 

  76. Xiao, L., Cao, Y., Xiao, J., et al., Chem. Commun., 2012, vol. 48, pp. 3321–3323.

    Article  CAS  Google Scholar 

  77. Li, L., Seng, K.H., Li, D., et al., Nano Res., 2014, vol. 7, pp. 1466–1476.

    Article  CAS  Google Scholar 

  78. Ji, L., Gu, M., Shao, Y., et al., Adv. Mater., 2014, vol. 26, pp. 2901–2908.

    Article  CAS  PubMed  Google Scholar 

  79. Ji, L., Zhou, W., Chabot, V., et al., ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 24895–24901.

    Article  CAS  PubMed  Google Scholar 

  80. Kim, I.T., Kim, S.-O., and Manthiram, A., J. Power Sources, 2014, vol. 269, pp. 848–854.

    Article  CAS  Google Scholar 

  81. Lin, Y.-M., Abel, P.R., Gupta, A., et al., ACS Appl. Mater. Interfaces, 2013, vol. 5, pp. 8273–8277.

    Article  CAS  PubMed  Google Scholar 

  82. Vogt, L.O. and Villevieille, C., J. Mater. Chem. A, 2017, vol. 5, pp. 3865–3874.

    Article  CAS  Google Scholar 

  83. Farbod, B., Cui, K., Kaliswaart, W.P., et al., ACS Nano, 2014, vol. 8, pp. 4415–4429.

    Article  CAS  PubMed  Google Scholar 

  84. Gu, M., Kushima, A., Shao, Y., et al., Nano Lett., 2013, vol. 13, pp. 5203–5211.

    Article  CAS  PubMed  Google Scholar 

  85. Su, D., Wang, C., Ahn, H., and Wang, G., Phys. Chem. Chem. Phys., 2013, vol. 15, pp. 12543–12550.

    Article  CAS  PubMed  Google Scholar 

  86. Park, J., Park, J.-W., Han, J.-H., et al., Mater. Res. Bull., 2014, vol. 58, pp. 186–189.

    Article  CAS  Google Scholar 

  87. Gorka, J., Baggetto, L., Keum, J.K., et al., J. Power Sources, 2015, vol. 284, pp. 1–9.

    Article  CAS  Google Scholar 

  88. Lu, Y.C., Ma, C., Alvarado, J., et al., J. Power Sources, 2015, vol. 284, pp. 287–295.

    Article  CAS  Google Scholar 

  89. Cheng, Y., Huang, J., Li, J., et al., J. Alloys Compd., 2016, vol. 658, pp. 234–240.

    Article  CAS  Google Scholar 

  90. Bian, H., Zhang, J., Yuen, M.-F., et al., J. Power Sources, 2016, vol. 307, pp. 634–640.

    Article  CAS  Google Scholar 

  91. Shimizu, M., Usui, H., and Sakaguchi, H., J. Power Sources, 2014, vol. 248, pp. 378–382.

    Article  CAS  Google Scholar 

  92. Su, D., Xie, X., and Wang, G., Chem. Eur. J, 2014, vol. 20, pp. 3192–3197.

    Article  CAS  PubMed  Google Scholar 

  93. Su, D., Ahn, H.J., and Wang, G., Chem. Commun., 2013, vol. 49, pp. 3131–3133.

    Article  CAS  Google Scholar 

  94. Wang, Y., Su, D., Wang, C., and Wang, G., Electrochem. Commun., 2013, vol. 29, pp. 8–11.

    Article  CAS  Google Scholar 

  95. Wang, Y.-X., Lim, Y.-C., Park, M.-S., et al., J. Mater. Chem. A, 2014, vol. 2, pp. 529–534.

    Article  CAS  Google Scholar 

  96. Ding, J., Li, Z., Wang, H.L., et al., J. Mater. Chem. A, 2015, vol. 3, pp. 7100–7111.

    Article  CAS  Google Scholar 

  97. Kalubarme, R.S., Lee, J.-Y., and Park, C.-J., ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 17226–17237.

    Article  CAS  PubMed  Google Scholar 

  98. Dirican, M., Lu, Y., Ge, Y., et al., ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 18387–18396.

    Article  CAS  PubMed  Google Scholar 

  99. Li, Z., Ding, J., Wang, H., et al., Nano Energy, 2015, vol. 15, pp. 369–378.

    Article  CAS  Google Scholar 

  100. Zhang, Y., Xie, J., Zhang, S., et al., Electrochim. Acta, 2015, vol. 151, pp. 8–15.

    Article  CAS  Google Scholar 

  101. Xie, X., Su, D., Zhang, J., et al., Nanoscale, 2015, vol. 7, pp. 3164–3172.

    Article  CAS  PubMed  Google Scholar 

  102. Xie, X., Chen, S., Sun, B., et al., ChemSusChem, 2015, vol. 8, pp. 2948–2955.

    Article  CAS  PubMed  Google Scholar 

  103. Liu, Y., Fang, X., Ge, M., et al., Nano Energy, 2015, vol. 16, pp. 399–407.

    Article  CAS  Google Scholar 

  104. Wu, L., Hu, X., Qian, J., et al., J. Mater. Chem. A, 2013, vol. 1, pp. 7181–7184.

    Article  CAS  Google Scholar 

  105. Wu, L., Lu, H., Xiao, L., et al., J. Mater. Chem. A, 2014, vol. 2, pp. 16424–16428.

    Article  CAS  Google Scholar 

  106. Wu, L., Lu, H., Xiao, L., et al., J. Power Sources, 2015, vol. 293, pp. 784–789.

    Article  CAS  Google Scholar 

  107. Xie, X., Su, D., Chen, S., et al., Chem. Asian J., 2014, vol. 9, pp. 1611–1617.

    Article  CAS  PubMed  Google Scholar 

  108. Lu, Y.C., Ma, C., Alvarado, J., et al., J. Mater. Chem. A, 2015, vol. 3, pp. 16971–16977.

    Article  CAS  Google Scholar 

  109. Zhu, C., Kopold, P., Li, W., et al., Adv. Sci., 2015, vol. 2, paper 1500200.

  110. Zhou, T., Pang, W.K., Zhang, C., et al., ACS Nano, 2014, vol. 8, pp. 8323–8333.

    Article  CAS  PubMed  Google Scholar 

  111. Dutta, P.K., Sen, U.K., and Mitra, S., RSC Adv., 2014, vol. 4, pp. 43155–43159.

    Article  CAS  Google Scholar 

  112. Liu, Y., Kang, H., Jiao, L., et al., Nanoscale, 2015, vol. 7, pp. 1325–1332.

    Article  CAS  PubMed  Google Scholar 

  113. Zhang, Y., Zhu, P., Huang, L., et al., Adv. Funct. Mater., 2015, vol. 25, pp. 481–489.

    Article  CAS  Google Scholar 

  114. Wang, J., Luo, C., Mao, J., et al., ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 11476–11481.

    Article  CAS  PubMed  Google Scholar 

  115. Qu, B., Ma, C., Ji, G., et al., Adv. Mater., 2014, vol. 26, pp. 3854–3859.

    Article  CAS  PubMed  Google Scholar 

  116. Li, W., Chou, S.-L., Wang, J.-Z., et al., Adv. Mater., 2014, vol. 26, pp. 4037–4042.

    Article  CAS  PubMed  Google Scholar 

  117. Kim, Y., Kim, Y., Choi, A., et al., Adv. Mater., 2014, vol. 26, no. 24, pp. 4139–4144.

    Article  CAS  PubMed  Google Scholar 

  118. Qian, J., Xiong, Y., Cao, Y., et al., Nano Lett., 2014, vol. 14, pp. 1865–1869.

    Article  CAS  PubMed  Google Scholar 

  119. Fan, X., Mao, J., Zhu, Y., et al., Adv. Energy Mater., 2015, vol. 5, paper 1500174.

  120. Liu, J., Kopold, P., and Wu, C., Energy Environ. Sci., 2015, vol. 8, pp. 3531–3538.

    Article  CAS  Google Scholar 

  121. Martine, M.L., Parzych, G., Thoss, F., et al., Solid State Ionics, 2014, vol. 268, pp. 261–264.

    Article  CAS  Google Scholar 

  122. Eisenmann, B. and Klein, J., Z. Naturforsch. B, 1988, vol. 43, pp. 69–71.

    Article  CAS  Google Scholar 

  123. Eisenmann, B. and Klein, J., Z. Naturforsch. B, 1988, vol. 43, pp. 1156–1160.

    Article  CAS  Google Scholar 

  124. Dreval, L., Zschor, M., Munchgesang, W., et al., J. Alloys Compd., 2017, vol. 695, pp. 1725–1742.

    Article  CAS  Google Scholar 

  125. Ong, S.P., Chevrier, V.L., Hautier, G., et al., Energy Environ. Sci., 2011, vol. 4, pp. 3680–3688.

    Article  CAS  Google Scholar 

  126. Chevrier, V.L. and Ceder, G., J. Electrochem. Soc., 2011, vol. 158, pp. A1011–A1014.

    Article  CAS  Google Scholar 

  127. Hong, S.Y., Kim, Y., Park, Y., et al., Energy Environ. Sci., 2013, vol. 6, pp. 2067–2081.

    Article  CAS  Google Scholar 

  128. Palomarec, V., Casas-Cabanas, M., Castillo-Martinez, E., et al., Energy Environ. Sci., 2013, vol. 6, pp. 2312–2337.

    Article  CAS  Google Scholar 

  129. Lee, D.-J., Park, J.-W., Hasa, I., et al., J. Mater. Chem. A, 2013, vol. 1, pp. 5256–5261.

    Article  CAS  Google Scholar 

  130. Jiang, Y., Hu, M., Zhang, D., et al., Nano Energy, 2014, vol. 5, pp. 60–66.

    Article  CAS  Google Scholar 

  131. Bommier, C. and Ji, X., Israel J. Chem., 2015, vol. 55, pp. 486–507.

    Article  CAS  Google Scholar 

  132. Kundu, D., Talaie, E., Duffort, V., and Nazar, L.F., Angew. Chem. Int. Ed., 2015, vol. 54, pp. 3431–3448.

    Article  CAS  Google Scholar 

  133. Yang, S. and Dong, W., Chin. J. Nonferrous Met., 2016, vol. 26, pp. 1051–1064.

    Google Scholar 

  134. Zhou, X.-F. and Zhao, F.-S., Battery Bimonthly, 2016, vol. 46, no. 3, pp. 172–175.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Morachevskii.

Additional information

Original Russian Text © A.G. Morachevskii, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 11, pp. 1579−1594.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morachevskii, A.G. Sodium–Tin System: Thermodynamic Properties of Alloys and Prospects for Using Tin and Its Alloys and Compounds in Sodium-Ion Batteries (Review). Russ J Appl Chem 91, 1785–1798 (2018). https://doi.org/10.1134/S1070427218110083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218110083

Keywords

Navigation