Skip to main content
Log in

Synthesis and Characterization of AlPO4/ZSM-5 Catalyst for Methanol Conversion to Dimethyl Ether

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A catalyst based on zeolite was synthesized using the hydrothermal method, and alumina phosphate was embedded in its structure. The correspondent reactor tests were carried out to assess the synthesized catalyst where methanol with a purity of 99.9% was used. The results indicated that alumina phosphate is considerably effective on catalyst functionality. Given the results, the best performance was obtained when the ratio of alumina phosphate to alumina is 0.7 weighted in catalyst and fixed-bed reactor serves in a temperature of 300°C and WHSV of 0.8 h‒1. Structure and morphology of synthesized catalyst were characterized by BET, XRF, SEM, and XRD. The catalyst was evaluated in the process of converting methanol to dimethyl ether in a fixed-bed reactor under operating conditions of 300°C, 1 atm and 0.5 mL min‒1 of feed (pure methanol). The results of test indicated by increasing the amount of alumina phosphate to alumina, the conversion rate of methanol was increased to a constant value and does not change in ratios higher than 0.7. Moreover, the methanol conversion rate will reach temperature 300°C at 84%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Noyen, J., De Wilde, A., Schroeven, M., Mullens, S., and Luyten, J., Int. J. Appl. Ceramic Tech., 2012, vol. 9, no. 5, pp. 902–910.

    Article  CAS  Google Scholar 

  2. Narula, C.K., Daw, C.S., Hoard, J.W., and Hammer., T., Int. J. Appl. Ceramic Tech., 2005, vol. 2, no. 6, pp. 452–466.

    Article  CAS  Google Scholar 

  3. Yilmaz, B., Topics in Catalysis, 2009, vol. 52, no. 6, pp. 888–895.

    Article  CAS  Google Scholar 

  4. Garcla, J., Li, K., and Davis, M.E., Mesoporous Zeolites: Preparation, Characterization and Applications, Wiley, 2015.

    Google Scholar 

  5. Rownaghi, A.A. and Hedlund, J., Ind. & Eng. Chem. Res., 2011, vol. 50, no. 21, pp. 11872–11878.

    Article  CAS  Google Scholar 

  6. Bjorgen, M., Joensen, F., Holm, M.S., Olsbye, U., Lillerud, and Svelle, S., Appl. Catal. A-Gen., 2008, vol. 345, no. 1, pp. 43–50.

    Article  CAS  Google Scholar 

  7. Zaidi, H.A. and Pant, K.K., Korean J. Chem. Eng., 2005, vol. 22, no. 3, pp. 353–357.

    Article  CAS  Google Scholar 

  8. Conte, M., Lopez-Sanchez, J.A., He, Q., Morgan, D.J., Ryabenkova, Y., Bartley, J.K., et al., Catal. Sci. Technol., 2012, vol. 2, no. 1, pp. 105–112.

    Article  CAS  Google Scholar 

  9. Hajimirzaee, S., Ainte, M., Soltani, B., Behbahani, R.M., Leeke, G.A., and Wood, J., Chem. Eng. Res. & Design, 2015, vol., no. 93, pp. 541–553.

    Article  CAS  Google Scholar 

  10. Yaripour, F., Mollavali, M., Jam, S.M., and Atashi, H., Energy & Fuels, 2009, vol. 23, no. 4, pp. 1896–1900.

    Article  CAS  Google Scholar 

  11. Zaidi, H.A. and Pant, K.K., Canadian J. Chem. Eng., 2005, vol. 83, no. 6, pp. 970–977.

    Article  CAS  Google Scholar 

  12. Kianfar, E., Salimi, M., Pirouzfar, V., and Koohestani, B., Int. J. Appl. Ceram. Technol., 2018, vol. 15, no. 3, pp. 734–741.

    Article  CAS  Google Scholar 

  13. Treacy, M.M. and Higgins, J.B., Collection of Simulated XRD Powder Patterns for Zeolites, 5th ed., Elsevier, vol. 2007.

    Google Scholar 

  14. Koekkoek, A.J.J., Kim, W., Degirmenci, V., Xin, H., Ryoo, R., Hensen, E.J.M., J. Catalysis, 2013, vol. 299, pp. 81–90.

    Article  CAS  Google Scholar 

  15. Isernia, L.F., Mat. Res., 2013, no. 16, pp. 792–802.

    Article  CAS  Google Scholar 

  16. Shukla, D.B. and Pandya, V.P., J. Chem. Tech. & Biotechn., 1989, vol. 44, no. 2, pp. 147–154.

    Article  CAS  Google Scholar 

  17. Cañizares, P., de Lucas, A., Dorado, F., Durán, A., and Asencio, I., Appl. Catalysis A: General, 1998, vol. 169, no. 1, pp. 137–150.

    Article  Google Scholar 

  18. Van Donk, S., Janssen, A.H., Bitter, J.H., and de Jong K.P., Catalysis Reviews, 2003, vol. 45, no. 2, pp. 297–319.

    Article  CAS  Google Scholar 

  19. Ni, Y., Sun, A., Wu, X., Hai, G., Hu, J., Li, T., et al., Micropor. & Mesopor. Mat., 2011, vol. 143, no. 2, pp. 435–442.

    Article  CAS  Google Scholar 

  20. Wu, W. and Weitz, E., Appl. Sur, Sci., 2014, vol. 316, pp. 405–415.

    Article  CAS  Google Scholar 

  21. Cruz-Cabeza, A.J., Esquivel, D., Jiménez-Sanchidrián, C., and Romero-Salguero, F.J., Materials, 2012, vol. 5, no. 1, pp. 121–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Biscardi, J.A., Meitzner, G.D., and Iglesia, E., J. Catalysis, 1998, vol. 179, no. 1, pp. 192–202.

    Article  CAS  Google Scholar 

  23. Kianfar, E., Salimi, M., Pirouzfar, V., and Koohestani, B., Synthesis and Modification of Zeolite ZSM-5 Catalyst with Solutions of Calcium Carbonate (CaCO3) and Sodium Carbonate (Na2CO3) for Methanol to Gasoline Conversion, 2018, https://doi.org/10.1515/ijcre-2017-0229.

    Book  Google Scholar 

  24. Bjørgen, M., Svelle, S., Joensen, F., Nerlov, J., Kolboe, S., Bonino, F., Palumbo, L., Bordiga, S., and Olsbye, U., J. Catal., 2007, vol. 249, pp. 195–207.

    Article  CAS  Google Scholar 

  25. Shareh, F.B., Kazemeini, M., Asadi, M., and Fattahi, M., Pet. Sci. Technol., 2014, vol. 32, pp. 1349–1356.

    Article  CAS  Google Scholar 

  26. Wan, Z., Wu, W., Chen, W., Yang, H., and Zhang, D., Ind. Eng. Chem. Res., 2014, vol. 53, no. 50, pp. 19471–19478.

    Article  CAS  Google Scholar 

  27. Dagle, R.A., Lizarazo-Adarme, J.A., Lebarbier Dagle, V., Gray, M.J., White, J.F., King, D.L., and Palo, D.R., Fuel Process. Technol., 2014, vol. 123, pp. 65–74.

    Article  CAS  Google Scholar 

  28. Bjørgen, M., Joensen, F., Lillerud, K.P., Olsbye, U., and Svelle, S., Catal. Today, 2009, vol. 142, pp. 90–97.

    Article  CAS  Google Scholar 

  29. Wu, L., Degirmenci, V., Magusin, P.C.M.M., Lousberg, N.J.H.G.M., and Hensen, E.J.M., J. Catal., 2013, vol. 298, pp. 27–40.

    Article  CAS  Google Scholar 

  30. Lee, J.H., Park, M.B., Lee, J.K., Min, H.-K., Song, M.K., and Hong, S.B., J. Am. Chem. Soc., 2010, vol. 132, pp. 12971–12982.

    Article  CAS  PubMed  Google Scholar 

  31. Di Zuo xing, Cheng, Y., Jiao, X., Li, J., Wu, J., and Zhang, D., Fuel, 2013, vol. 104, pp. 878–881.

    Article  CAS  Google Scholar 

  32. Hosseini, S., Taghizadeh, M., and Eliassi, A., J. Natural Gas Chem., 2012, vol. 21, pp. 344–351.

    Article  CAS  Google Scholar 

  33. Hassanpour, S., Yaripour, F., and Taghizadeh, M., Fuel Proc. Tech., 2010, vol. 91, pp. 1212–1221.

    Article  CAS  Google Scholar 

  34. Sabour, B., Peyrovi, M.H., Hamoule, T., and Rashidzadeh, M., J. Ind. & Eng. Chem., 2014, vol. 20, pp. 222–227.

    Article  CAS  Google Scholar 

  35. Rownaghi, A.A., Rezaei, F., Stante, M., and Hedlund, J., Appl. Catal., B: Env., 2012, vols. 119–120, pp. 56–61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Kianfar.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kianfar, E. Synthesis and Characterization of AlPO4/ZSM-5 Catalyst for Methanol Conversion to Dimethyl Ether. Russ J Appl Chem 91, 1711–1720 (2018). https://doi.org/10.1134/S1070427218100208

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218100208

Keywords

Navigation