Skip to main content
Log in

Preparation and Application of Magnetically Recoverable Cationic Exchanger Support on Monodisperse Fe3O4 Nanoparticles

  • Sorption and Ion Exchange Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A magnetically recoverable cationic exchanger has been effectively prepared through immobilized chloroacetic acid (CA) onto the Fe3O4 nanoparticles. The magnetic nanoparticles (MNPs) were synthesized by a coprecipitation method in an aqueous system. The MNPs were modified with sodium silicate and chloroacetic acid (CA), thus endowed these nanoparticles with strong magnetism and good dispersion. The physicochemical properties of the cationic exchange materials were characterized with Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA). The magnetic properties of the cationic exchange materials were analyzed by a vibrating sample magnetometer (VSM). The content of ions was measured by atomic absorption spectrophotometric method. The prepared cationic exchange nanoparticles display an excellent magnetic property with a saturation magnetization value of 26.58 emu/g and the prepared exchanger possess considerable thermal stability, which indicating a great potential application in heavy metal ion wastewater treatment. In this experiment, the exchange capacity of lead ion was 3.4 mmol g–1, And the maximum lead removal rate is up to 73.85%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nriagu, J.O. and Pacyna, J.M., Nature, 1988, vol. 333, pp. 134–139.

    Article  CAS  PubMed  Google Scholar 

  2. Faur-Brasquet, C., Reddad, Z., Kadirvelu, K., et al., Appl. Sur. Sci., 2002, vol. 196, pp. 356–365.

    Article  CAS  Google Scholar 

  3. Ngomsik, A.-F., Bee, A., Draye, M., et al., Comptes Rendus Chimie, 2005, vol. 8, pp. 963–970.

    Article  CAS  Google Scholar 

  4. Madhava Rao, M., Ramesh, A., Purn Chandra Rao, et al., J. Hazard. Mat., B, 2006, vol. 129, pp.123–129.

    Article  CAS  Google Scholar 

  5. Liu, Q., Bei, Y., and Zhou, F., Central Eur. J. Chem., 2009, vol. 7, no. 1, pp. 79–82.

    CAS  Google Scholar 

  6. Liu, J., Zhao, Z., and Jiang, G., Env. Sci. & Tech., 2008, vol. 42, pp. 6949–6954.

    Article  CAS  Google Scholar 

  7. Ma, N., Yang, Y., Chen, S., et al., J. Hazard. Mat., 2009, vol. 171, pp. 288–293.

    Article  CAS  Google Scholar 

  8. Galca, E., Maicaneanu, A., and Ilea, P., Central Eur. J. Chem., 2014, vol.12, pp. 821–828.

    Article  CAS  Google Scholar 

  9. Bleotu, I., Niculina Dragoi, E., Mureseanu, M., et al., Env. Progress & Sust. Energy, 2018, vol. 37, no. 1, pp. 605–612.

    Article  CAS  Google Scholar 

  10. Zhang, Q., Zhang, S., Chen, S., et al., J. Col. & Int. Sci., 2008, vol. 322, pp. 421–428.

    Article  CAS  Google Scholar 

  11. Yang, Y., Ma, N., Zhang, Q., et al., J. Appl. Polym. Sci., 2009, vol. 113, pp. 3638–3645.

    Article  CAS  Google Scholar 

  12. Zhang, Q., Zhang, S., Yang, Y., et al., Polym. Adv. Tech., 2010, vol. 21, no. 7, pp. 520–527.

    CAS  Google Scholar 

  13. Shunkevich, A., Akulich, Z., Mediak, G., et al., React. & Funct. Polym., 2005, vol. 63, no.1, pp. 27–34.

    Article  CAS  Google Scholar 

  14. Vuorio, M., Murtomäki, L., Hirvonen, J., et al., J. Control. Rel., 2004, vol. 97, no. 3, pp. 485–492.

    Article  CAS  Google Scholar 

  15. Gao, Y., Zhang, N., Zhu, L., et al., Russ. J. Appl. Chem., 2017, vol. 90, no. 10, pp. 1634–1639.

    Article  CAS  Google Scholar 

  16. Yang, B., Hou, Z., Sun, M., et al., Russ. J. Appl. Chem., 2018, vol. 91, no. 2, pp. 264–269.

    Article  CAS  Google Scholar 

  17. Yu, L., Li, S., Yuan, Y., et al., Int. J. Phar., 2006, vol. 319, no. 1, pp. 107–113.

    Article  CAS  Google Scholar 

  18. Pugliese, E., Coentro, J., and Zeugolis, D., Adv. Mater., 2018, vol. 30, no. 13, pp. 1–19.

    Article  CAS  Google Scholar 

  19. Wheaton, R. and Harrington D., Ind. Eng. Chem., 1952, vol. 44, no. 8, pp. 1796–1800.

    Article  CAS  Google Scholar 

  20. Dominguez, L., Benak, K., and Economy, J., Polym. Adv. Technol., 2001, vol. 12, nos. 3, 4, pp. 197–205.

    Article  CAS  Google Scholar 

  21. Liu, R., Guo, J., and Tang, H., J. Col. & Int. Sci., 2002, vol. 248, no. 2, pp. 268–274.

    Article  CAS  Google Scholar 

  22. Yavuz, C.T., Mayo, J.T., Yu, W.W., et al., Science, 2006, vol. 314, no. 5801, pp. 964–967.

    Article  PubMed  Google Scholar 

  23. Laurent, S., Forge, D., Port, M., et al., Chem. Rev., 2008, vol. 108, no. 6, pp. 2064–2110.

    Article  CAS  Google Scholar 

  24. Leslie-Pelecky, D.L., and Rieke, R.D., Chem. Mater., 1996, vol. 8, no. 8, pp. 1770–1783.

    Article  CAS  Google Scholar 

  25. Polshettiwar, V., Luque, R., Fihri, A., et al., Chem. Rev., 2011, vol. 111, no. 5, pp. 3036–3075.

    Article  CAS  PubMed  Google Scholar 

  26. Laurent, S., and Mahmoudi, M., Int. J. Molec. Epidemiology & Genetics, 2011, vol. 2, no. 4, 367–390.

    CAS  Google Scholar 

  27. Mahmoudi, M., Sahraian, M.A., Shokrgozar, M.A., et al., ACS Chem. Neurosci., 2011, vol. 2, no. 3, pp. 118–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mahmoudi, M., Hosseinkhani, H., Hosseinkhani, M., et al., Chem. Rev., 2011, vol. 111, no. 2, pp. 253–280.

    Article  CAS  PubMed  Google Scholar 

  29. Xu, B., Dou, H., Tao, K., et al., Langmuir, 2011, vol. 27, no. 19, pp. 12134–12142.

    Article  CAS  PubMed  Google Scholar 

  30. Maeta, M., Koga, S., Wada, J., et al., Cancer, 1987, vol. 59, no. 6, pp. 1101–1106.

    Article  CAS  PubMed  Google Scholar 

  31. John, L., Janeta, M., and Szafert, S., Mat. Sci. & Eng., C, 2017, vol. 78, pp. 901–911.

    Article  CAS  Google Scholar 

  32. Chaudhuri, R.G., and Paria, S., Chem. Rev., 2012, vol. 112, no. 4, pp. 2373–2433.

    Article  CAS  Google Scholar 

  33. Kudr, J., Haddad, Y., Richtera, L., et al., Nanomaterials, 2017, vol. 7, pp. 243–270.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qikun Zhang.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Li, H., Wang, J. et al. Preparation and Application of Magnetically Recoverable Cationic Exchanger Support on Monodisperse Fe3O4 Nanoparticles. Russ J Appl Chem 91, 1694–1700 (2018). https://doi.org/10.1134/S107042721810018X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042721810018X

Keywords

Navigation