Skip to main content
Log in

An Organomineral Composite Sorbent for Selective Recovery of Cu(II) from Aqueous Solutions

  • Sorption and Ion Exchange Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The phase composition, microstructure, and volume distribution of the dispersed lead sulfide phase in the matrix of the synthesized organomineral composite sorbent KU-2×8−PbS were studied. The cation exchanger granules are coated with a virtually continuous layer of lead sulfide up to 1.8–2.5 μm thick. In the volume of cation exchanger granules, the PbS phase forms discrete spherical particles with the mean diameter of 90–100 nm. Experiments on competing sorption of Cu(II) and Zn(II) from nitrate solutions revealed high selectivity of the sorbent to copper. Zinc concentrations of up to 0.004 mM do not noticeably affect the copper sorption, ensuring the possibility of separating the metals in the sorption step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Skorokhodov, V.I., Anikin, Yu.V., Radionov, B.K., Ashikhin, V.V., and Akulich, L.F., Tsvetn. Met., 2000, nos. 11–12, pp. 71–73.

    Google Scholar 

  2. Vol’khin, V.V. and L’vovich, V.I., Sintez i svoistva ionoomennykh materialov (Synthesis and Properties of Ion-Exchange Materials), Moscow: Nauka, 1977.

    Google Scholar 

  3. Dremicheva, E.S., Vestn. Mosk. Univ., Ser. 2: Khimiya, 2017, vol. 58, no. 4, pp. 204–207.

    CAS  Google Scholar 

  4. Kropacheva, T.N., Antonova, A.S., and Kornev, V.I., Russ. J. Inorg. Chem., 2017, vol. 62, no. 2, pp. 150–159.

    Article  CAS  Google Scholar 

  5. De Gisi, S., Lofrano, G., Grassi, M., and Notarnicola, M., Sustain. Mater. Technol., 2016, vol. 9, pp. 10–40.

    Google Scholar 

  6. Shaheen, S.M., Eissa, F.I., Ghanem, K.M., GamalEl-Din H.M., and Al Anany, F.S. J. Environ. Manag., 2013, vol. 128, pp. 514–521.

    Article  CAS  Google Scholar 

  7. Sviridov, A.V., Yurchenko, V.V., Sviridov, V.V., and Ganebnykh, E.V., Sorbts. Khromatogr. Prots., 2016, vol. 16, no. 1, pp. 78–86.

    CAS  Google Scholar 

  8. Demey, H., Vincent, T., and Guibal, E., Chem. Eng. J., 2018, vol. 332, pp. 582–595.

    Article  CAS  Google Scholar 

  9. Elwakeel, K.Z. and Guibal, E., Carbohydr. Polym., 2015, vol 134, pp. 190–204.

    Article  CAS  PubMed  Google Scholar 

  10. Elwakeel, K.Z., El-Bindary, A.A., Kouta, E.Y., and Guibal, E., Chem. Eng. J., 2018, vol. 332, pp. 727–736.

    Article  CAS  Google Scholar 

  11. Kumar, P., Pournara, A.D., Kim, K.-H., Bansal, V., Rapti, S., and Manos, M.J., Prog. Mater. Sci., 2017, vol. 86, pp. 25–74.

    Article  CAS  Google Scholar 

  12. Wawrzkiewicz, M., Wisniewska, M., Wolowicz, A., Gun’ko, V.M., and Zarko, V.I., Micropor. Mesopor. Mater., 2017, vol. 250, pp. 128–147.

    Article  CAS  Google Scholar 

  13. Taheri, R., Bahramifar, N., Zarghami, M.R., Javadian, H., and Mehraban, Z., Powder Technol., 2017, vol. 321, pp. 44–54.

    Article  CAS  Google Scholar 

  14. Ivanets, A.I., Srivastava, V., Kitikova, N.V., Shashkova, I.L., and Sillanpää, M., J. Environ. Chem. Eng., 2017, vol. 5, pp. 2010–2017.

    Article  CAS  Google Scholar 

  15. Elwakeel, K.Z. and Guibal, E., J. Environ. Chem. Eng., 2016, vol. 4, pp. 3632–3645.

    Article  CAS  Google Scholar 

  16. Leiviskä, T., Khalid, M.K., Sarpola, A., and Tanskanen, J., J. Environ. Manag., 2017, vol. 190, pp. 231–242.

    Article  CAS  Google Scholar 

  17. Markovic, B.M., Vukovic, Z.M., Spasojevic, V.V., Kusigerski, V.B., Pavlovic, V.B., Onjia, A.E., and Nastasovic, A.B., J. Alloys Compd., 2017, vol. 705, pp. 38–50.

    Article  CAS  Google Scholar 

  18. Bartczak, P., Klapiszewski, L., Wysokowski, M., Majchrzak, I., Czernicka, W., Piasecki, A., Ehrlich, H., and Jesionowski, T., J. Environ. Manag., 2017, vol. 204, pp. 300–310.

    Article  CAS  Google Scholar 

  19. Qu, Z., Fang, L., Chen, D., Xu, H., and Yan, N., Fuel, 2017, vol. 203, pp. 128–134.

    Article  CAS  Google Scholar 

  20. Bekrenev, A.V. and Pyartman, A.K., Zh. Neorg. Khim., 1995, vol. 40, no. 6, pp. 938–942.

    CAS  Google Scholar 

  21. Bekrenev, A.V., Pyartman, A.K., and Kholodkevich, S.V., Zh. Neorg. Khim., 1995, vol. 40, no. 6, pp. 943–947.

    CAS  Google Scholar 

  22. Markov, V.F., Formazyuk, N.I., Maskaeva, L.N., Makurin, Yu.N., and Stepanovskikh, E.I., Al’tern. Energet. Ekol., 2007, vol. 47, no. 3, p.104.

    Google Scholar 

  23. Markov, V.F., Paznikova, S.N., Maskaeva, L.N., Ikanina, E.V., and Vasin, A.A., Tsvetn. Met., 2008, no. 9, pp. 39–42.

    Google Scholar 

  24. Fang, L., Li, L., Qu, Z., Xu, H., Xu, J., and Yan, N., J. Hazard. Mater., 2018, vol. 342, pp. 617–624.

    Article  CAS  PubMed  Google Scholar 

  25. Khalezov, B.D., Kuchnoe vyshchelachivanie mednykh i medno-tsinkovykh rud (Heap Leaching of Copper and Copper–Zinc Ores), Yekaterinburg: Ural’skoe Otdel. Ross. Akad. Nauk, 2013.

    Google Scholar 

  26. Bobylev, A.E., Markov, V.F., and Maskaeva, L.N., Butlerovsk. Soobshch., 2012, vol. 29, no. 2, pp. 69–74.

    Google Scholar 

  27. Bobylev, A.E., Ikanina, E.V., Markov, V.F., and Maskaeva, L.N., Kondens. Sredy Mezhfazn. Gran., 2013, vol. 15, no. 3, pp. 238–246.

    CAS  Google Scholar 

  28. Bobylev, A.E., Markov, V.F., Maskaeva, L.N., and Chufarov, A.Y., Russ. J. Appl. Chem., 2014, vol. 87, no. 5, pp. 572–578.

    Article  CAS  Google Scholar 

  29. Venitsianov, E.V. and Rubinshtein, R.N., Dinamika sorbtsii iz zhidkikh sred (Dynamics of Sorption from Liquid Media), Moscow: Nauka, 1983.

    Google Scholar 

  30. Kokotov, Yu.A. and Pasechnik, V.A., Ravnovesie i kinetika ionnogo obmena (Equilibrium and Kinetics of Ion Exchange), Leningrad: Khimiya, 1970.

    Google Scholar 

  31. Charlot, G., Les méthodes de la chimie analytique, Paris: Masson, 1966.

    Google Scholar 

  32. Zhivopistsev, V.P. and Selezneva, E.A., Analiticheskaya khimiya tsinka (Analytical Chemistry of Zinc), Moscow: Nauka, 1975.

    Google Scholar 

  33. Egorov, Yu.V., Statika sorbtsii mikrokomponentov oksigidratami (Statics of Microcomponent Sorption with Oxyhydrates), Moscow: Atomizdat, 1975.

    Google Scholar 

  34. Lur’e, Yu.Yu., Spravochnik po analiticheskoi khimii (Handbook of Analytical Chemistry), Moscow: Khimiya, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Bobylev.

Additional information

Original Russian Text © A.E. Bobylev, V.F. Markov, M.M. Kozlova, L.N. Maskaeva, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 10, pp. 1491−1499.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobylev, A.E., Markov, V.F., Kozlova, M.M. et al. An Organomineral Composite Sorbent for Selective Recovery of Cu(II) from Aqueous Solutions. Russ J Appl Chem 91, 1680–1687 (2018). https://doi.org/10.1134/S1070427218100166

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218100166

Keywords

Navigation