Skip to main content
Log in

Effect of Irradiation with a Continuous Beam of Accelerated Electrons on the Texture and Nanostructure of Carbon Black: a Study by Adsorption and High-Resolution Transmission Electron Microscopy

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Textural, structural, and morphological changes occurring in globular carbon black of various particle size fractions under continuous irradiation with a continuous beam of 2.5-MeV accelerated electrons were studied by the methods of adsorption and high-resolution transmission electron microscopy. The electron irradiation leads to pronounced transformation of the solid globular framework of carbon black mainly into graphite-like nanocapsules of 10–50 nm size with the spacing between the graphene layers of the order of 0.355 nm. The observed effect leads to a decrease in the porosity (by a factor of approximately 1.65) and in the specific surface area (by a factor of 3–4) of the irradiated samples. This may be due to the transformation of the turbostratic (practically amorphous) form of carbon black into the nanostructured state with denser packing of carbon particles. The physicochemical properties of such carbon should be primarily determined by the structure of the solid framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Surovikin, V.F., Ross. Khim. Zh. (Zh. Ross. Khim. O–va. im. D.I. Mendeleeva), 2007, vol. LI, no. 4, pp. 92–97.

    Google Scholar 

  2. Razd’yakonova, G.I. and Likholobov, V.A., Int. Polym. Sci. Technol., 2014, vol. 40, no. 12, pp. T1–T4.

    Google Scholar 

  3. Fenelonov, V.B., Vvedenie v fizicheskuyu khimiyu formirovaniya supramolekulyarnoi struktury adsorbentov i katalizatorov (Introduction to Physical Chemistry of the Formation of the Supramolecular Structure of Adsorbents and Catalysts), Novosibirsk: Sib. Otdel. Ross. Akad. Nauk, 2002.

    Google Scholar 

  4. Donnet, J.-B., Bansal, R.C., and Wang, M.-J., Carbon Black: Science and Technology, New York: Dekker, 1993.

    Google Scholar 

  5. Carbon Materials for Advanced Technologies, Burchell, T.D., Ed., Amsterdam: Pergamon, 1999.

  6. Zhu, W., Miser, D.E., Chan, W.G., and Hajaligol, M.R., Carbon, 2004, vol. 42, pp. 1841–1845.

    Article  CAS  Google Scholar 

  7. Long, Ch.M., Nascarella, M.A., and Valberg, P.A., Environ. Pollut., 2013, vol. 181, pp. 271–286.

    Article  CAS  PubMed  Google Scholar 

  8. Lauer, J.L., Handbook of Raman Spectroscopy, Lewis, I.R. and Edwards, H.G.M., Eds., New York: Dekker, 2001, ch. 22, pp. 863–917.

  9. Harris, P.J.F., Carbon Nanotubes and Related Structures. New Materials for the Twenty-First Century, Cambridge Univ. Press, 1999.

    Book  Google Scholar 

  10. Bandosz, T.J., Carbon Materials for Catalysis, Serp, P. and Figueiredo, J.L., Eds., New Jersey: Wiley, 2009, ch. 2, pp. 45–92.

  11. Bostan, M., Keast, V.J., Watanabe, M., McCulloch, D.G., Shakerzadeh, M., Teo, E.H.T., and Tay, B.K., Carbon, 2009, vol. 47, pp. 94–101.

    Article  CAS  Google Scholar 

  12. Fenelonov, V.B., Poristyi uglerod (Porous Carbon), Novosibirsk: Nauka, 1995.

    Google Scholar 

  13. Karnaukhov, A.P., Adsorbtsiya. Tekstura dispersnykh i poristykh materialov (Adsorption. Texture of Disperse and Porous Materials), Novosibirsk: Nauka, 1999.

    Google Scholar 

  14. Ugarte, D., Nature, 1992, vol. 359, pp. 707–709.

    Article  CAS  PubMed  Google Scholar 

  15. Seto, T., Inoue, A., Higashi, H., Otani, Y., Kohno, M., and Hirasawa, M., Carbon, 2014, vol. 70, pp. 224–232.

    Article  CAS  Google Scholar 

  16. Carbon Nanotechnology: Recent Developments in Chemistry, Physics, Materials Science and Device Applications, Dai, L., Ed., Dayton: Elsevier, 2006.

  17. McDonough, J.K., Frolov, A.I., Presser, V., Niu, J., Miller, C.H., Ubieto, T., Fedorov, M.V., and Gogotsi, Yu., Carbon, 2012, vol. 50, no. 9, pp. 3298–3309.

    Article  CAS  Google Scholar 

  18. Hu, S., Dong, Y., Yang, J., Liu, J., and Cao, S., J. Mater. Chem., 2012, vol. 22, pp. 1957–1961.

    Article  CAS  Google Scholar 

  19. Kryazhev, Yu.G., Koval’, N.N., Likholobov, V.A., Teresov, A.D., Drozdov, V.A., and Trenikhin, M.V., Tech. Phys. Lett., 2012, vol. 38, no. 4, pp. 301–303.

    Article  CAS  Google Scholar 

  20. Trenikhin, M.V., Protasova, O.V., Seropyan, G.M., and Drozdov, V.A., Chem. Sustain. Develop., 2013, vol. 1, pp. 101–106.

    Google Scholar 

  21. Yamada, K. and Tobisawa, S., Carbon, 1989, vol. 27, no. 6, pp. 845–852.

    Article  CAS  Google Scholar 

  22. Trenikhin, M.V., Kryazhev, Yu.G., Koval’, N.N., Teresov, A.D., Protasova, O.V., Drozdov, V.A., and Likholobov, V.A., Int. Polym. Sci. Technol., 2014, vol. 40, no. 12, pp. T21–T24.

    Article  Google Scholar 

  23. Trenikhin, M.V., Protasova, O.V., Seropyan, G.M., Semtsov, A.E., and Drozdov, V.A., Nanotechnol. Russ., 2014, vol. 9, nos. 7–8, pp. 461–465.

    Article  CAS  Google Scholar 

  24. Kizuka, T., Kato, R., and Miyazawa, K., Carbon, 2009, vol. 47., pp. 138–144.

    Article  CAS  Google Scholar 

  25. Trenikhin, M.V., Ivashchenko, O.V., Eliseev, V.S., Tolochko, B.P., Arbuzov, A.B., Muromtsev, I.V., Kryazhev, Yu.G., Drozdov, V.A., Sazhina, E., and Likholobov, V.A., Fullerenes, Nanotubes Carbon Nanostruct., 2015, vol. 23, pp. 801–806.

    Article  CAS  Google Scholar 

  26. Trenikhin, M.V., Ivashchenko, O.V., Kryazhev, Yu.G., Tolochko, B.P., Eliseev, V.S., Arbuzov, A.B., Drozdov, V.A., and Likholobov, V.A., Nanotechnol. Russ., 2015, vol. 10, nos. 9–10, pp. 696–700.

    Google Scholar 

  27. Bladh, H., Johnsson, J., and Bengtsson, P.E., Appl. Phys. B, 2008, vol. 90, no. 1, pp. 109–125.

    Article  CAS  Google Scholar 

  28. Gun’ko, V.M., Kozynchenko, O.P., Tennison, S.R., Leboda, R., Skubiszewska-Zieba, J., and Mikhalovsky, S.V., Carbon, 2012, vol. 50, pp. 3146–3153.

    Article  CAS  Google Scholar 

  29. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodrigues-Reinoso, F., Rouquerol, J., and Sing, K.S.W., Pure Appl. Chem., 2015, vol. 87, nos. 9–10, pp. 1051–1069.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Drozdov.

Additional information

Original Russian Text © V. A. Drozdov, T.I. Gulyaeva, M.V. Trenikhin, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 10, pp. 1441−1448.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drozdov, V.A., Gulyaeva, T.I. & Trenikhin, M.V. Effect of Irradiation with a Continuous Beam of Accelerated Electrons on the Texture and Nanostructure of Carbon Black: a Study by Adsorption and High-Resolution Transmission Electron Microscopy. Russ J Appl Chem 91, 1635–1641 (2018). https://doi.org/10.1134/S1070427218100105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218100105

Keywords

Navigation