Skip to main content
Log in

Polyethylene Glycol for LiFePO4/C Composites Preparation: Large or Small Molecular Weight

  • Organic Synthesis and Industrial Organic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Olivine LiFePO4 is challenged by its poor electronic and ionic conductivities for lithium-ion batteries. Polyethylene glycol (PEG) has been applied for LiFePO4 preparation by different research groups, but there is no consensus on the influence of the mean molecular weight of PEG on the structure and electrochemical performances of LiFePO4/C composites. In this work, LiFePO4/C composites were prepared by using micronsized FePO4·2H2O powder as starting material, PEG (mean molecular weight of 200, 400, 4000 or 10000) and citric acid as complex carbon source. The structure and electrochemical performances of LiFePO4/C composites would be decided considerably by the mean molecular weight of PEG, and the sample using PEG200 exhibited the least inter-particle agglomeration, the smallest charge transfer resistance and the highest discharge capacity. A probable growth mechanism is also proposed based on SEM images and electrochemical results: with the assistance of citric acid, PEG molecule with small molecular weight tends to cover one or only a few micron-sized FePO4·2H2O particles, significantly suppress the agglomeration of primary LiFePO4 particles and thus result in uniform particle-size distribution and carbon coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Franger, S., Le Cras, F., Bourbon, C., and Rouault, H., Electrochem. Solid-State Lett., 2002, vol. 5, no. 10, pp. A231–A233.

    Article  CAS  Google Scholar 

  2. Zhou, G.F., Russ. J. Appl. Chem+., 2017, vol. 90, no. 9, pp. 1519–1523.

    Article  CAS  Google Scholar 

  3. Eftekhari, A., J. Power Sources, 2017, vol. 343, pp. 395–411.

    Article  CAS  Google Scholar 

  4. Li, X.F., Luo, D.M., Zhang, X., and Zhang, Z., J. Power Sources, 2015, vol. 291, pp. 75–84.

    Article  CAS  Google Scholar 

  5. Mat, A., Sulaiman, K.S., and Arof, A.K., Ionics, 2016, vol. 22, no. 1, pp. 135–142.

    Article  CAS  Google Scholar 

  6. Kuzmanovic, M., Jugovic, D., and Mitric, M., et al., Ceram. Int., 2015, vol. 41, no. 5, pp. 6753–6758.

    Article  CAS  Google Scholar 

  7. Xia, J., Zhu, F.L., and Wang, G.R., et al., Solid State Ionics, 2017, vol. 308, no. 1, pp. 133–138.

    Article  CAS  Google Scholar 

  8. Wang, P., Zhang, G., and Li, Z.C., et al., Acs Appl. Mater. Inter., 2016, vol. 8, no. 40, pp. 26908–26915.

    Article  CAS  Google Scholar 

  9. Liu, S.X., Yin, H.B., Wang, H.B., and Wang, H., J. Nanosci. Nanotechno., 2014, vol. 14, no. 9, pp. 7060–7065.

    Article  CAS  Google Scholar 

  10. Wang, Y.H., Mei, R., and Yang, X.M., Ceram. Int., 2014, vol. 40, no. 6, pp. 8439–8444.

    Article  CAS  Google Scholar 

  11. Zhi, X.K., Liang, G.C., and Ou, X.Q., et al., J. Electrochem. Soc., 2017, vol. 164, no. 6, pp. A1285–A1290.

    Article  CAS  Google Scholar 

  12. Wang, L.N., Zhan, X.C., Zhang, Z.G., and Zhang, K.L., J. Alloy. Compd., 2008, vol. 456, no. 1, pp. 461–465.

    Article  CAS  Google Scholar 

  13. Qiu, S., Zhang, X.G., and Li, Y.W., et al., J. Mater. Sci.-Mater. El., 2016, vol. 27, no. 7, pp. 7255–7264.

    Article  CAS  Google Scholar 

  14. Li, X.T., Shao, Z.B., and Liu, K.R., et al., Colloid Surface A, 2017, vol. 529, pp. 850–855.

    Article  CAS  Google Scholar 

  15. Wang, F., Fang, Z.W., and Zhang, Y., J. Electroanal. Chem., 2016, vol. 775, pp. 110–115.

    Article  CAS  Google Scholar 

  16. Yang, X.H., Tu, J.G., and Lei, M., et al., Electrochim. Acta, 2016, vol. 193, pp. 206–215.

    Article  CAS  Google Scholar 

  17. Tan, L.Y., Tang, Q.L., and Chen, X.H., et al., Electrochim. Acta, 2014, vol. 137, no.8, pp. 344–351.

    Article  CAS  Google Scholar 

  18. Zhu, J.X., Yoo, K., El-halees, I., and Kisailus, D., Acs. Appl. Mater. Inter., 2014, vol. 6, no. 23, pp. 21550–21557.

    Article  CAS  Google Scholar 

  19. Hong, J.H., Wang, Y.F., He, G., and He, M.Z., Mater. Chem. Phys., 2012, vol. 133, no. 1, pp. 573–577.

    Article  CAS  Google Scholar 

  20. Liu, H., Cao, Q., and Fu, L.J., et al., Electrochem. Commun., 2006, vol. 8, no. 10, pp. 1553–1557.

    Article  CAS  Google Scholar 

  21. Wang, J. and Sun, X., Energy Environ. Sci., 2015, vol. 8, no. 4, pp. 1110–1138.

    Article  CAS  Google Scholar 

  22. Bazzi, K., Nazri, M., and Naik, V.M., et al., J. Power Sources, 2016, vol. 306, pp. 17–23.

    Article  CAS  Google Scholar 

  23. Zhang, N., Lin, L., and Xu, Z., J. Solid State Electrochem., 2014, vol. 18, no. 9, pp. 2401–2410.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhe Hong.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, J., Yin, G. Polyethylene Glycol for LiFePO4/C Composites Preparation: Large or Small Molecular Weight. Russ J Appl Chem 91, 1612–1616 (2018). https://doi.org/10.1134/S1070427218100075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218100075

Keywords

Navigation