Russian Journal of Applied Chemistry

, Volume 90, Issue 12, pp 2028–2032 | Cite as

Carbon Fiber Reinforced LiFePO4-Based Three-Dimensional Bulk Electrodes with Metal-Current-Collector- and Binder-Free Design

  • Wei Yang
  • Guofeng Zhou
Various Technological Processes


Conductive hierarchically porous LiFePO4 blocks enhanced by carbon fiber were successfully obtained, which is benefited from nice sinter-activity of hydrothermal synthesized LiFePO4. In combination with hierarchically porous and carbon-fiber-reinforced electric-conductive topologies, metal-current-collector- and binder-free design, the as-prepared bulk electrodes present excellent rate capability and cycle life. Our proofof- concept study on LiFePO4-based bulk electrodes shows facile approach to improve energy density and lower cost of Li-ion batteries.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Padhi, A.K., Nanjundaswamy, K.S., and Goodenough, J.B., J. Electrochem. Soc., 1997, vol. 144, pp. 1188–1194.CrossRefGoogle Scholar
  2. 2.
    Smirnov, K.S., Zhorin, V.A., and Yashtulov, N.A., Russ. J. Appl. Chem., 2013, vol. 86, no. 4, pp. 603–605.CrossRefGoogle Scholar
  3. 3.
    Eliseeva, S.N., Levin, O., Tolstopyatova, E.G., Alekseeva, E.V., and Kondratiev, V.V., Russ. J. Appl. Chem., 2015, vol. 88, no. 7, pp. 1146–1149.CrossRefGoogle Scholar
  4. 4.
    Kudryavtsev, E.N., Sibiryakov, R.V., Agafonov, D.V. Naraev, V.N., and Bobyl’, A.V., Russ. J. Appl. Chem., 2012, vol. 85, no. 6, pp. 879–882.CrossRefGoogle Scholar
  5. 5.
    Hu, Y.S., Guo, Y.G., Dominko, R., Gaberscek, M., Jamnik, J., and Maier, J., Adv. Mater., 2007, vol. 19, pp. 1963–1966.CrossRefGoogle Scholar
  6. 6.
    Guo, Z.J., and Chen, Z.L., Russ. J. Appl. Chem., 2016, vol. 89, no. 12, pp. 2071–2075.CrossRefGoogle Scholar
  7. 7.
    Kang, B. and Ceder, G., Nature, 2009, vol. 458, pp. 190–193.CrossRefGoogle Scholar
  8. 8.
    Smirnov, K.S., Yashtulov, N.A., Kuz’micheva, G.M., and Zhorin, V. A., Russ. J. Appl. Chem., 2011, vol. 84, no. 10, pp. 1744–1747.CrossRefGoogle Scholar
  9. 9.
    Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., and Chen, Y., ACS Nano, 2008, vol. 2, pp.463–470.CrossRefGoogle Scholar
  10. 10.
    Wang, X., Zhi, L., and Mullen, K., Nano Lett., 2008, vol. 1, pp.323–327.CrossRefGoogle Scholar
  11. 11.
    Xu, Y., Bai, H., Lu, G., Li, C., and Shi, G., J. Am. Chem. Soc., 2008, vol. 130, pp.5856–5857.CrossRefGoogle Scholar
  12. 12.
    Zhou, G.F., and Guo, S.Y., Russ. J. Appl. Chem., 2017, vol. 90, no. 7, pp. 1188–1192.CrossRefGoogle Scholar
  13. 13.
    Pan, D., Wang, S., Zhao, B., Wu, M., Zhang, H., Wang, Y., and Jiao, Z., Chem. Mater., 2009, vol. 21, pp. 3136–3142.CrossRefGoogle Scholar
  14. 14.
    Barker, J., Saidi, M.Y., and Swoyer, J.L., Electrochem. Solid-State Lett., 2003, vol. 6, pp. 53–55.CrossRefGoogle Scholar
  15. 15.
    Guo, Z.J., and Chen, Z.L., Russ. J. Appl. Chem., 2017, vol. 90, no. 6, pp. 962–966.CrossRefGoogle Scholar
  16. 16.
    Wang, Y.G., Wang. Y.R., Hosono, E., Wang, K.X., and Zhou, H.S., Angew. Chem. Int. Ed., 2008, vol. 47, pp. 7571–7575.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Environmental & Municipal EngineeringNorth China University of Water Resources and Electric PowerZhengzhouChina
  2. 2.Henan Engineering Research Center of Water Pollution and Soil Damage RemediationZhengzhouChina
  3. 3.Henan Key Laboratory of Water Environment Simulation and TreatmentZhengzhouChina

Personalised recommendations