Advertisement

Russian Journal of Applied Chemistry

, Volume 90, Issue 12, pp 1990–1997 | Cite as

Preparation of Porous Carbon–Mineral Materials by Chemical Treatment of Sapropel Carbonization Products

  • E. N. Terekhova
  • A. V. Lavrenov
  • A. V. Shilova
  • T. V. Kireeva
  • G. G. Saveleva
  • M. V. Trenikhin
  • O. B. Belskaya
Production of New Materials
  • 11 Downloads

Abstract

The effect of chemical treatment (with nitric acid, sodium hydroxide, or superheated steam) of sapropel carbonization products on the properties of the final carbon–mineral materials was studied. Steam activation exerts the strongest effect on the samples of carbon–mineral materials prepared from organic sapropel, leading to the maximal increase in the surface area and to a change in the textural characteristics. All kinds of treatment lead to a considerable increase in the fraction of micropores (to 26% of the total pore volume) and to a decrease in the fraction of macropores (from 44 to 14% of the total pore volume). The strongest changes in the properties of carbon–mineral materials prepared from mineral sapropel are observed upon acid treatment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Steklov, N.A. and Il’ina, E.D., Sapropel’ i ego ispol’zovanie v narodnom khozyaistve (Sapropel and Its Use in National Economy), Moscow: Nedra, 1969, pp. 99–136.Google Scholar
  2. 2.
    Nasyrova, I.A., Stepanova, E.F., Volodina, T.A., et al., Omsk. Nauchn. Vestn., 2006, vol. 2, no. 37, pp. 160–163.Google Scholar
  3. 3.
    Krivonos, O.I. and Plaksin, G.V., Sverkhkrit. Flyuidy: Teor. Prakt., 2010, vol. 5, no. 3, pp. 4–14.Google Scholar
  4. 4.
    Kuznetsov, B.N., Taraban’ko, V.E., Chernyak, M.Yu., and Beregovtsova, N.G., Khim. Rast. Syr’ya, 2004, no. 1, pp. 35–39.Google Scholar
  5. 5.
    Krivonos, O.I., Terekhova, E.N., Plaksin, G.V., and Lavrenov, A.V., Chem. Technol. Fuels Oils, 2016, vol. 52, no. 1, pp. 1–10.CrossRefGoogle Scholar
  6. 6.
    Kovalenko, T.A. and Adeeva, L.N., Khim. Inter. Ustoich. Razv., 2010, vol. 18, no. 2, pp. 189–195.Google Scholar
  7. 7.
    RF Patent 2414961, 2011.Google Scholar
  8. 8.
    Plaksin, G.V. and Krivonos, O.I., Ross. Khim. Zh., 2007, no. 4, pp. 140–147.Google Scholar
  9. 9.
    Krivonos, O.I., Terekhova, E.N., and Plaksin, G.V., Khim. Inter. Ustoich. Razv., 2015, vol. 23, pp. 355–360.Google Scholar
  10. 10.
    Ghampson, I.T., Sepúlvedac, C., Garcia, R., et al., Appl. Catal. (A), 2012, vols. 439–440, pp. 111–124.CrossRefGoogle Scholar
  11. 11.
    Gordeev, A.V. and Vodyankina, O.V., Petrol. Chem., 2014, vol. 54, no. 6, pp. 452–458.CrossRefGoogle Scholar
  12. 12.
    Deliyanni, E. and Bandosza, T.J., J. Hazard. Mater., 2011, vol. 186, pp. 667–674.CrossRefGoogle Scholar
  13. 13.
    Tamarkina, Y.V., Kucherenko, V.A., and Shendrik, T.G., Solid Fuel Chem., 2014, vol. 48, no. 4, pp. 251–259.CrossRefGoogle Scholar
  14. 14.
    Wang, Ch., Daimon, H., and Sun, Sh., NanoLett., 2009, vol. 9, no. 4, pp. 1493–1496.CrossRefGoogle Scholar
  15. 15.
    Yang, S., Hu, H., and Chen, G., Carbon, 2002, vol. 40, no. 3, pp. 277–284.CrossRefGoogle Scholar
  16. 16.
    Plaksin, G.V., Baklanova, O.N., Lavrenov, A.V., and Likholobov, V.A., Solid Fuel Chem., 2014, vol. 48, no. 6, pp. 349–355.CrossRefGoogle Scholar
  17. 17.
    Krivonos, O.I. and Plaksin, G.V., Solid Fuel Chem., 2015, vol. 49, no. 1, pp. 36–40.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. N. Terekhova
    • 1
  • A. V. Lavrenov
    • 1
  • A. V. Shilova
    • 1
  • T. V. Kireeva
    • 1
  • G. G. Saveleva
    • 1
  • M. V. Trenikhin
    • 1
  • O. B. Belskaya
    • 1
  1. 1.Institute of Hydrocarbons Processing, Siberian BranchRussian Academy of SciencesOmskRussia

Personalised recommendations