Russian Journal of Applied Chemistry

, Volume 90, Issue 12, pp 1918–1925 | Cite as

Effect of Calcination Temperature on the Structure and Catalytic Properties of MnO x /Ca2O3 in the Reaction of CO and Ethane Oxidation

  • S. S. Sigaeva
  • T. N. Afonasenkova
  • O. A. Bulavchenko
  • T. I. Gulyaeva
  • E. A. Anoshkina
  • P. G. Tsyrul’nikov


Effect of the calcination temperature of the MnOx/Ga2O3 system on its structural and catalytic properties in the reaction of oxidation of CO and hydrocarbons. The dependences of the catalytic activity of MnO x /Ga2O3 in the reactions of CO and ethane oxidation on the calcination temperature exhibit an extremal behavior. The maximum values of activity are observed upon calcination of the system at 700°C, i.e., at the temperature that is limiting for the existence of a solid solution of manganese ions in γ-Ga2O3. The structural changes occurring with increasing calcination temperature are accompanied by a substantial decrease in the specific surface area of a sample. The observed rise in the specific catalytic activity (by a factor of ~7 upon an increase in the preliminary-calcination temperature from 600 to 800°C) confirms that the thermal activation effect exists for the given system.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    RF Patent 2 440 926 (publ. 2012).Google Scholar
  2. 2.
    Zagoruiko, A.N., Curr. Top. Catal., 2012, vol. 10, pp. 113–129.Google Scholar
  3. 3.
    Solov’ev, S.A. and Orlik, S.N., Kinet. Catal., 2009, vol. 50, no. 5, pp. 705–714.CrossRefGoogle Scholar
  4. 4.
    Pugacheva, E.V., Borshch, V.N., Zhuk, S.Ya., et al., Ross. Nanotekhnol., 2015, vol. 10, nos. 11–12, pp. 39–44.Google Scholar
  5. 5.
    Döbber, D., Kiebling, D., Schmitz, W., and Wendt, G., Appl. Catal., B, 2004, vol. 52, pp. 135–143.CrossRefGoogle Scholar
  6. 6.
    Perala Venkataswamy, Komateedi N. Rao, Deshetti Jampaiah, and Benjaram M. Reddy, Appl. Catal., B, 2015, vol. 162, pp. 122–132.CrossRefGoogle Scholar
  7. 7.
    Craciun, R., Nentwick, B., Hadjiivanov, K., and Knözinger, H., Appl. Catal., A, 2003, vol. 243, pp. 67–69.CrossRefGoogle Scholar
  8. 8.
    Trawczyńsky, J., Bielak, B., and Miśta, W., Appl. Catal., B, 2005, vol. 55, p. 277.CrossRefGoogle Scholar
  9. 9.
    Tsyrul’nikov, P.G., Ross. Khim. Zh. (Zh. Ross. Khim. O–va im. D. I. Mendeleeva), 2007, no. 4, pp. 133–139.Google Scholar
  10. 10.
    Bulavchenko, O.A., Tsybula, S.V., Cherepanova, S.V., et al., J. Struct. Chem., 2009, vol. 50, no. 3, pp. 474–478.CrossRefGoogle Scholar
  11. 11.
    Tsyrul’nikov, P.G., Sal’nikov, V.S., Drozdov, V.A., et al., Kinet. Catal., 1991, vol. 32, no. 2-2, pp. 387–394.Google Scholar
  12. 12.
    Afonasenko, T.N., Bulavchenko, O.A., Anoshkina, E.A., et al., Khim. Interesakh Ustoich. Razvitiya, 2015, vol. 23, no. 6, pp. 681–690.Google Scholar
  13. 13.
    Bulavchenko, O.A., Vinokurov, Z.S., Tsybulya, S.V., et al., Dalton Trans.: Int. J. Inorg. Chem., 2015, vol. 44, no. 35, pp. 15499–15507.CrossRefGoogle Scholar
  14. 14.
    Bulavchenko, O.A., Tsybulya, S.V., Cherepanova, S.V., et al., J. Struct. Chem., 2010, vol. 51, no. 3, pp. 500–506.CrossRefGoogle Scholar
  15. 15.
    Bulavchenko O. A., Afonasenko T. N., and Tsyrul’nikov, P.G., Kinet. Catal., 2014, vol. 55, no. 5, pp. 639–648.CrossRefGoogle Scholar
  16. 16.
    Bulavchenko, O.A., Tsybulya, S.V., Afonasenko, T.N., and Tsyrul’nikov, P.G., Appl. Catal., A, 2013, vol. 459, pp. 73–80.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. S. Sigaeva
    • 1
  • T. N. Afonasenkova
    • 1
  • O. A. Bulavchenko
    • 2
    • 3
  • T. I. Gulyaeva
    • 1
  • E. A. Anoshkina
    • 1
  • P. G. Tsyrul’nikov
    • 1
  1. 1.Institute of Hydrocarbons Processing, Siberian BranchRussian Academy of SciencesOmskRussia
  2. 2.Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations