Skip to main content
Log in

Photocatalytic Activity of Titanium Dioxide Nanoparticles Immobilized in the Polymer Network of Polyacrylamide Hydrogel

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Composite hydrogels based on polyacrylamide immobilized nanoparticles of commercial (P25 brand) titanium dioxide and of titanium dioxide nanoparticles prepared by electric explosion of a wire were synthesized. The enthalpy of interaction at the polyacrylamide/TiO2 interface was determined by microcalorimetry using the thermochemical cycle method. Interaction of polyacrylamide polymer chains with the surface of TiO2 nanoparticles is energetically unfavorable. The absence of interactions between the hydrogel polymer network and surface of TiO2 nanoparticles favors manifestation of the UV-induced photocatalytic activity of TiO2 nanoparticles immobilized in the hydrogel. Immobilization in the polyacrylamide hydrogel matrix decreases the photocatalytic activity of P25 brand TiO2 nanoparticles, but does not affect the photocatalytic activity of titanium dioxide nanoparticles prepared by the electric explosion method. The photocatalytic activity of TiO2 nanoparticles immobilized in the bulk of polyacrylamide hydrogel evaluated by the decomposition of Methyl Orange dye is controlled by the diffusion rate of the dye molecules into the bulk of the hydrogel and depends also on the aggregation of TiO2 nanoparticles in the hydrogel matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schneider, J. et al., Chem. Rev., 2014, vol. 114, no. 19, pp. 9919–9986.

    Article  CAS  Google Scholar 

  2. Li, C. et al., Green Chem., 2017, vol. 19, no. 4, pp. 882–899.

    Article  CAS  Google Scholar 

  3. Truppi, A. et al., Catalysts, 2017, vol. 7, no. 4, pp. 100–133.

    Article  Google Scholar 

  4. Low, J. et al., Adv. Mater., 2017, vol. 29, no. 20, pp. 1–20.

    Article  Google Scholar 

  5. Srikanth, B. et al., J. Environ. Manag., 2017, vol. 200, pp. 60–78.

    Article  CAS  Google Scholar 

  6. Singh, S., Mahalingam, H., and Singh, P.K., Appl. Catal. A: General, 2013, vols. 462–463, pp. 178–195.

    Google Scholar 

  7. Colmenares, J.C. and Kuna, E., Molecules, 2017, vol. 22, no. 5, pp. 790–806.

    Article  Google Scholar 

  8. Lei, P. et al., J. Hazard. Mater., 2012, vols. 227–228, pp. 185–194.

    Article  Google Scholar 

  9. Philippova, O.E., Polym. Sci., Ser. C, 2000, vol. 42, no. 2, pp. 208–228.

    Google Scholar 

  10. Kangwansupamonkon, W., Jitbunpot, W., and Kiatkamjornwong, S., Polym. Degrad. Stab., 2010, vol. 95, no. 9, pp. 1894–1902.

    Article  CAS  Google Scholar 

  11. Tang, Q., et al., Eur. Polym. J., 2007, vol. 43, no. 6, pp. 2214–2220.

    Article  CAS  Google Scholar 

  12. Kazemi, F., Mohamadnia, Z., Kaboudin, B., and Karimi, Z., J. Appl. Polym. Sci., 2016, vol. 133, no. 19, pp. 43386–43395.

    Article  Google Scholar 

  13. Wei, S. et al., Polym. Polym. Compos., 2016, vol. 16, no. 2, pp. 101–113.

    Google Scholar 

  14. Morsi, R.E. and Elsalamony, R.A., New J. Chem., 2016, vol. 40, no. 3, pp. 2927–2934.

    Article  CAS  Google Scholar 

  15. Zhang, D. et al., Sci. Rep., 2013, vol. 3, pp. 1399–1406.

    Article  Google Scholar 

  16. Im, J.S., Bai, B.C., In, S.J., and Lee, Y.S., J. Colloid Interface Sci., 2010, vol. 346, no. 1, pp. 216–221.

    Article  CAS  Google Scholar 

  17. Yun, J., et al., Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol., 2011, vol. 176, no. 3, pp. 276–281.

    Article  CAS  Google Scholar 

  18. Lučić, M. et al., Sep. Purif. Technol., 2014, vol. 122, pp. 206–216.

    Article  Google Scholar 

  19. Shih, W.H., Hirata, Y., and Carty, W.M., Colloidal Ceramic Processing of Nano-, Micro-, and Macro- Particulate Systems, Westerville: Am. Ceram. Soc., 2012.

    Google Scholar 

  20. Zhang, Y. et al., Water Res., 2008, vol. 42, nos. 8–9, pp. 2204–2212.

    Article  CAS  Google Scholar 

  21. Treloar, L.R.G., The Physics of Rubber Elasticity, Oxford: Oxford Univ. Press, 2005.

    Google Scholar 

  22. Quesada-Pérez, M., Maroto-Centeno, J.A., Forcada, J., and Hidalgo-Alvarez, R., Soft Matter, 2011, vol. 7, no. 22, pp. 10536–10547.

    Article  Google Scholar 

  23. Rubinstein, M. and Colby, R.H., Polymer Physics, Oxford: Oxford Univ. Press, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Mansurov.

Additional information

Original Russian Text © R.R. Mansurov, A.P. Safronov, N.V. Lakiza, I.V. Beketov, 2017, published in Zhurnal Prikladnoi Khimii, 2017, Vol. 90, No. 10, pp. 1399−1409.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansurov, R.R., Safronov, A.P., Lakiza, N.V. et al. Photocatalytic Activity of Titanium Dioxide Nanoparticles Immobilized in the Polymer Network of Polyacrylamide Hydrogel. Russ J Appl Chem 90, 1712–1721 (2017). https://doi.org/10.1134/S1070427217100238

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427217100238

Navigation