Russian Journal of Applied Chemistry

, Volume 90, Issue 10, pp 1712–1721 | Cite as

Photocatalytic Activity of Titanium Dioxide Nanoparticles Immobilized in the Polymer Network of Polyacrylamide Hydrogel

  • R. R. Mansurov
  • A. P. Safronov
  • N. V. Lakiza
  • I. V. Beketov
Macromolecular Compounds and Polymeric Materials
  • 2 Downloads

Abstract

Composite hydrogels based on polyacrylamide immobilized nanoparticles of commercial (P25 brand) titanium dioxide and of titanium dioxide nanoparticles prepared by electric explosion of a wire were synthesized. The enthalpy of interaction at the polyacrylamide/TiO2 interface was determined by microcalorimetry using the thermochemical cycle method. Interaction of polyacrylamide polymer chains with the surface of TiO2 nanoparticles is energetically unfavorable. The absence of interactions between the hydrogel polymer network and surface of TiO2 nanoparticles favors manifestation of the UV-induced photocatalytic activity of TiO2 nanoparticles immobilized in the hydrogel. Immobilization in the polyacrylamide hydrogel matrix decreases the photocatalytic activity of P25 brand TiO2 nanoparticles, but does not affect the photocatalytic activity of titanium dioxide nanoparticles prepared by the electric explosion method. The photocatalytic activity of TiO2 nanoparticles immobilized in the bulk of polyacrylamide hydrogel evaluated by the decomposition of Methyl Orange dye is controlled by the diffusion rate of the dye molecules into the bulk of the hydrogel and depends also on the aggregation of TiO2 nanoparticles in the hydrogel matrix.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schneider, J. et al., Chem. Rev., 2014, vol. 114, no. 19, pp. 9919–9986.CrossRefGoogle Scholar
  2. 2.
    Li, C. et al., Green Chem., 2017, vol. 19, no. 4, pp. 882–899.CrossRefGoogle Scholar
  3. 3.
    Truppi, A. et al., Catalysts, 2017, vol. 7, no. 4, pp. 100–133.CrossRefGoogle Scholar
  4. 4.
    Low, J. et al., Adv. Mater., 2017, vol. 29, no. 20, pp. 1–20.CrossRefGoogle Scholar
  5. 5.
    Srikanth, B. et al., J. Environ. Manag., 2017, vol. 200, pp. 60–78.CrossRefGoogle Scholar
  6. 6.
    Singh, S., Mahalingam, H., and Singh, P.K., Appl. Catal. A: General, 2013, vols. 462–463, pp. 178–195.Google Scholar
  7. 7.
    Colmenares, J.C. and Kuna, E., Molecules, 2017, vol. 22, no. 5, pp. 790–806.CrossRefGoogle Scholar
  8. 8.
    Lei, P. et al., J. Hazard. Mater., 2012, vols. 227–228, pp. 185–194.CrossRefGoogle Scholar
  9. 9.
    Philippova, O.E., Polym. Sci., Ser. C, 2000, vol. 42, no. 2, pp. 208–228.Google Scholar
  10. 10.
    Kangwansupamonkon, W., Jitbunpot, W., and Kiatkamjornwong, S., Polym. Degrad. Stab., 2010, vol. 95, no. 9, pp. 1894–1902.CrossRefGoogle Scholar
  11. 11.
    Tang, Q., et al., Eur. Polym. J., 2007, vol. 43, no. 6, pp. 2214–2220.CrossRefGoogle Scholar
  12. 12.
    Kazemi, F., Mohamadnia, Z., Kaboudin, B., and Karimi, Z., J. Appl. Polym. Sci., 2016, vol. 133, no. 19, pp. 43386–43395.CrossRefGoogle Scholar
  13. 13.
    Wei, S. et al., Polym. Polym. Compos., 2016, vol. 16, no. 2, pp. 101–113.Google Scholar
  14. 14.
    Morsi, R.E. and Elsalamony, R.A., New J. Chem., 2016, vol. 40, no. 3, pp. 2927–2934.CrossRefGoogle Scholar
  15. 15.
    Zhang, D. et al., Sci. Rep., 2013, vol. 3, pp. 1399–1406.CrossRefGoogle Scholar
  16. 16.
    Im, J.S., Bai, B.C., In, S.J., and Lee, Y.S., J. Colloid Interface Sci., 2010, vol. 346, no. 1, pp. 216–221.CrossRefGoogle Scholar
  17. 17.
    Yun, J., et al., Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol., 2011, vol. 176, no. 3, pp. 276–281.CrossRefGoogle Scholar
  18. 18.
    Lučić, M. et al., Sep. Purif. Technol., 2014, vol. 122, pp. 206–216.CrossRefGoogle Scholar
  19. 19.
    Shih, W.H., Hirata, Y., and Carty, W.M., Colloidal Ceramic Processing of Nano-, Micro-, and Macro- Particulate Systems, Westerville: Am. Ceram. Soc., 2012.Google Scholar
  20. 20.
    Zhang, Y. et al., Water Res., 2008, vol. 42, nos. 8–9, pp. 2204–2212.CrossRefGoogle Scholar
  21. 21.
    Treloar, L.R.G., The Physics of Rubber Elasticity, Oxford: Oxford Univ. Press, 2005.Google Scholar
  22. 22.
    Quesada-Pérez, M., Maroto-Centeno, J.A., Forcada, J., and Hidalgo-Alvarez, R., Soft Matter, 2011, vol. 7, no. 22, pp. 10536–10547.CrossRefGoogle Scholar
  23. 23.
    Rubinstein, M. and Colby, R.H., Polymer Physics, Oxford: Oxford Univ. Press, 2003.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • R. R. Mansurov
    • 1
  • A. P. Safronov
    • 1
    • 2
  • N. V. Lakiza
    • 1
  • I. V. Beketov
    • 1
    • 2
  1. 1.Ural Federal UniversityYekaterinburgRussia
  2. 2.Institute of Electrophysics, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations