Russian Journal of Applied Chemistry

, Volume 90, Issue 10, pp 1700–1705 | Cite as

Aerogels Based on Calcium Alginate and Silicon Dioxide and Modified with Carbon Nanotubes for Selective Sorption of Argon from a Mixture with Oxygen

  • E. N. Ivanova
  • N. N. Burmistrova
  • M. B. Alekhina
  • P. Yu. Tsygankov
  • S. I. Ivanov
Specific Technological Processes

Abstract

Two kinds of aerogels, those based on silicon dioxide and on calcium aginate, modified with multiwalled carbon nanotubes, were synthesized by the sol–gel method. The aerogels were tested as adsorbents for separating the argon–oxygen gas mixture. The adsorbent based on calcium alginate with 30 wt % content of multiwalled carbon nanotubes exhibits increased selectivity to argon in its adsorption from a mixture with oxygen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shumyatskii, Yu.I., Promyshlennye adsorbtsionnye protsessy (Industrial Adsorption Processes), Moscow: KolosS, 2009.Google Scholar
  2. 2.
    Savin, I.A., Kalachev, M.V., and Savina, A.I., Nauchn. Vestn., 2017, no. 1 (11), pp. 143–155.Google Scholar
  3. 3.
    Miroshnichenko, Yu.V., Enikeeva, R.A., Perfil’ev, A.B., and Kassu, E.M., Vestn. Ross. Voen.-Med. Akad., 2017, no. 1 (57), pp. 194–197.Google Scholar
  4. 4.
    Petricevic, R., Reichenauer, G., Bock, V., et al., J. Noncryst. Solids, 1998, vol. 225, no. 1, pp. 41–45.CrossRefGoogle Scholar
  5. 5.
    Kolen’ko, Yu.V., Garshev, A.V., Churagulov, B.R., et al., J. Photochem. Photobiol. A: Chemistry, 2005, vol. 172, no. 1, pp. 19–26.CrossRefGoogle Scholar
  6. 6.
    Rao, A.V., Hegde, N.D., and Hirashima, H., J. Colloid Interface Sci., 2007, vol. 305, no. 1, pp. 124–132.CrossRefGoogle Scholar
  7. 7.
    Stavitskaya, S.S. and Goba, V.E., Nanosyst., Nanomater., Nanotechnol., 2009, vol. 7, no. 3, pp. 683–699.Google Scholar
  8. 8.
    Cui, S., Cheng, W., Shen, X., et al., Energy Environ. Sci., 2011, vol. 4, no. 6, pp. 2070–2074.CrossRefGoogle Scholar
  9. 9.
    Bedilo, A.F., Il’ina, E.V., Mishakov, I.V., and Vedyagin, A.A., Khim. Inter. Ustoich. Razv., 2011, vol. 19, pp. 31–38.Google Scholar
  10. 10.
    Men’shutina, N.V., Katalevich, A.M., and Smirnova, I., Sverkhkrit. Flyuidy: Teor. Prakt., 2013, vol.8, no. 3, pp. 49–55.Google Scholar
  11. 11.
    Lermontov, S.A., Malkova, A.N., Yurkova, L.L., et al., Mater. Lett., 2014, vol. 116, no. 1, pp. 116–119.CrossRefGoogle Scholar
  12. 12.
    Dong, S., Huang, G., Su, M., and Huang, T., ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 40, pp. 22256–22263.CrossRefGoogle Scholar
  13. 13.
    Shabanova, N.A. and Sarkisov, P.D., Zol’-gel’ tekhnologii. Nanodispersnyi kremnezem (Sol–Gel Technologies. Nanodispersed Silica), Moscow: Binom, 2012.Google Scholar
  14. 14.
    Ivanov, S.I., Tsygankov, P.Yu., Khudeev, I.I., and Men’shutina, N.V., Usp. Khim. Khim. Tekhnol., 2015, vol. 29, no. 4 (163), pp. 83–85.Google Scholar
  15. 15.
    Neimark, I.E., Sinteticheskie mineral’nye adsorbenty i nositeli katalizatorov (Synthetic Mineral Adsorbents and Catalyst Supports), Kiev: Naukova Dumka, 1982.Google Scholar
  16. 16.
    Kiselev, A.V., Mezhmolekulyarnye vzaimodeistviya v adsorbtsii i khromatografii (Intermolecular Interactions in Adsorption and Chromatography), Moscow: Vysshaya Shkola, 1986.Google Scholar
  17. 17.
    Tarkovskaya, I.E., Okislennyi ugol’ (Oxidized Coal), Kiev: Naukova Dumka, 1981.Google Scholar
  18. 18.
    Eletskii, A.V., Phys.–Usp., 2004, vol. 47, no. 11, pp. 1119–1154.CrossRefGoogle Scholar
  19. 19.
    Bogdanovskaya, V.A., Koltsova, E.M., Zhutaeva, G.V., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 1, pp. 45–54.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. N. Ivanova
    • 1
  • N. N. Burmistrova
    • 1
  • M. B. Alekhina
    • 1
  • P. Yu. Tsygankov
    • 1
  • S. I. Ivanov
    • 1
  1. 1.Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations