Russian Journal of Applied Chemistry

, Volume 90, Issue 10, pp 1686–1692 | Cite as

Effect of the Copper Oxide Sintering Additive on the Electrical and Electrochemical Properties of Anode Materials Based on Sr2Fe1.5Mo0.5O6–δ

  • D. A. Osinkin
  • N. I. Lobachevskaya
  • N. M. Bogdanovich
Applied Electrochemistry and Metal Corrosion Protection
  • 3 Downloads

Abstract

The effect of introducing 1–3 wt % copper oxide sintering additive on the electrical and electrochemical characteristics of promising anode materials for solid oxide fuel cells based on Sr2Fe1.5Mo0.5O6–δ was studied. The total conductivity increases with increasing amount of copper oxide. The maximum conductivity in humid hydrogen at 800°C, 45 S cm–1, was reached on introducing 3 wt % CuO. The sintering additive enhances the electrochemical activity of Sr2Fe1.5Mo0.5O6–δ and Sr2Fe1.5Mo0.5O6–δCe0.8Sm0.2O1.9 anodes. A decrease in the sintering temperature of the anodes containing CuO with the electrolyte based on lanthanum gallate directly correlates with the electrochemical activity of the anodes. The minimum value of the polarization resistivity, 0.15 Ω cm2 at 800°С in a humid hydrogen atmosphere, was obtained for the composite anode with 3 wt % CuO sintered at a temperature of 1050°С.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jiang, S.P., J. Appl. Electrochem., 2004, vol. 34, pp. 1045–1055.CrossRefGoogle Scholar
  2. 2.
    Prakash, B.S., Kumar, S.S., and Aruna, S.T., Renew. Sustain. Energy Rev., 2014, vol. 36, pp. 149–179.CrossRefGoogle Scholar
  3. 3.
    Ruiz-Trejo, E., Azad, A.K., and Irvine, J.T.S., J. Electrochem. Soc., 2015, vol. 162, pp. F273–F279.CrossRefGoogle Scholar
  4. 4.
    Drozdz-Ciesla, E., Jolanta, J.W., and Rekas, B.M., J. Therm. Anal. Calorim., 2012, vol. 108, pp. 1051–1057.CrossRefGoogle Scholar
  5. 5.
    Hauch, A., Brodersen, K., Chen, M., and Mogensen, M.B., Solid State Ionics, 2016, vol. 293, pp. 27–36.CrossRefGoogle Scholar
  6. 6.
    Gabaly, F.E., McCarty, K.F., Bluhm, H., et al., PCCP, 2013, vol. 15, pp. 8334–8341.CrossRefGoogle Scholar
  7. 7.
    Khan, M.S., Lee, S.-B., Song, R.-H., et al., Ceram. Int., 2016, vol. 42, pp. 35–48.CrossRefGoogle Scholar
  8. 8.
    Osinkin, D.A., Bogdanovich, N.M., Beresnev, S.M., et al., J. Power Sources, 2015, vol. 288, pp. 20–25.CrossRefGoogle Scholar
  9. 9.
    Gotsch, T., Schachinger, T., Stoger-Pollach, M., et al., Appl. Surf. Sci., 2017, vol. 402, pp. 1–11.CrossRefGoogle Scholar
  10. 10.
    Osinkin, D.A., Int. J. Hydrogen Energy, 2016, vol. 41, pp. 17577–17584.CrossRefGoogle Scholar
  11. 11.
    Kolotygin, V.A., Tsipis, E.V., Shaula, A.L., et al., J. Solid State Electrochem., 2011, vol. 15, pp. 313–327.CrossRefGoogle Scholar
  12. 12.
    Pudmich, G., Boukamp, B.A., Gonzalez-Cuenca, M., et al., Solid State Ionics, 2000, vol. 135, pp. 434–438.CrossRefGoogle Scholar
  13. 13.
    Danilovic, N., Luo, J.L., Chuang, K.T., et al., J. Power Sources, 2009, vol. 194, pp. 252–262.CrossRefGoogle Scholar
  14. 14.
    Kolotygin, V.A., Tsipis, E.V., Ivanov, A.I., et al., J. Solid State Electrochem., 2012, vol. 16, pp. 2335–2348.CrossRefGoogle Scholar
  15. 15.
    Plint, S.M., Connor, P.A., Tao, S., et al., Solid State Ionics, 2006, vol. 177, pp. 2005–2008.CrossRefGoogle Scholar
  16. 16.
    Danilovic, N., Vincent, A., Luo, J.L., et al., Chem. Mater., 2010, vol. 22, pp. 957–965.CrossRefGoogle Scholar
  17. 17.
    Fu, Q.X., Tietz, F., and Stoever, D., J. Electrochem Soc., 2006, vol. 153, pp. D74–D83.CrossRefGoogle Scholar
  18. 18.
    Moos, R., Menesklou, W., Schreiner, H.J., et al., Sens. Actuators B, 2000, vol. 67, pp. 178–183.CrossRefGoogle Scholar
  19. 19.
    Hui, S. and Petric, A., Mater. Res. Bull., 2002, vol. 37, pp. 1215–1231.CrossRefGoogle Scholar
  20. 20.
    Wang, Z., Tian, Y., and Li, Y., J. Power Sources, 2011, vol. 196, pp. 6104–6109.CrossRefGoogle Scholar
  21. 21.
    Zhang, L., Zhou, Q., He, Q., et al., J. Power Sources, 2010, vol. 195, pp. 6356–6366.CrossRefGoogle Scholar
  22. 22.
    Miao, G., Yuan, C., Chen, T., et al., Int. J. Hydrogen Energy, 2016, vol. 41, pp. 1104–1111.CrossRefGoogle Scholar
  23. 23.
    Feng, J., Yang, G., Dai, N., et al., J. Mater. Chem. A, 2014, vol. 2, pp. 17628–17634.CrossRefGoogle Scholar
  24. 24.
    Hou, M., Sun, W., Li, P., et al., J. Power Sources, 2014, vol. 272, pp. 759–765.CrossRefGoogle Scholar
  25. 25.
    Zhang, T.S., Ma, J., Chan, L.B., et al., Solid State Ionics, 2004, vol. 167, pp. 203–207.CrossRefGoogle Scholar
  26. 26.
    Tsipis, E.V., Waerenborgh, J.C., and Kharton, V.V., J. Solid State Electrochem., 2017, vol. 21, pp. 2965–2974.CrossRefGoogle Scholar
  27. 27.
    Kolchugin, A.A., Pikalova, E.Yu., Bogdanovich, N.M., et al., Russ. J. Electrochem., 2015, vol. 51, no. 5, pp. 483–490.CrossRefGoogle Scholar
  28. 28.
    Kuzin, B.L., Bogdanovich, N.M., Bronin, D.I., et al., Russ. J. Electrochem., 2007, vol. 43, pp. 920–928.CrossRefGoogle Scholar
  29. 29.
    Ding, H., Sullivan, N.P., and Ricote, S., Solid State Ionics, 2017, vol. 306, pp. 97–103.CrossRefGoogle Scholar
  30. 30.
    Osinkin, D.A., Lobachevskaya, N.I., and Suntsov, A.Yu., J. Alloys Compd., 2017, vol. 708, pp. 451–455.CrossRefGoogle Scholar
  31. 31.
    Osinkin, D.A., Lobachevskaya, N.I., and Kuz’min, A.V., Russ. J. Appl. Chem., 2017, vol. 90, no. 1, pp. 41–46.CrossRefGoogle Scholar
  32. 32.
    Kotov, Yu.A., J. Nanoparticle Res., 2003, vol. 5, pp. 539–550.CrossRefGoogle Scholar
  33. 33.
    Gavrilyuk, A.L., Osinkin, D.A., and Bronin, D.I., Russ. J. Electrochem., 2017, vol. 53, pp. 575–588.CrossRefGoogle Scholar
  34. 34.
    Gorelov, V.P., Bronin, D.I., Sokolova, Ju.V., et al., J. Eur. Ceram. Soc., 2001, vol. 21, pp. 2311–2317.CrossRefGoogle Scholar
  35. 35.
    He, B., Zhao, L., Song, S., et al., J. Electrochem. Soc., 2012, vol. 159, pp. B619–B626.CrossRefGoogle Scholar
  36. 36.
    Osinkin, D.A., Kuzin, B.L., and Bogdanovich, N.M., Russ. J. Electrochem., 2009, vol. 45, no. 4, pp. 483–489.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. A. Osinkin
    • 1
    • 2
  • N. I. Lobachevskaya
    • 3
  • N. M. Bogdanovich
    • 1
  1. 1.Institute of High-Temperature Electrochemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal University Named after the First President of Russia B.N.YeltsinYekaterinburgRussia
  3. 3.The Institute of Solid State Chemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations