Skip to main content
Log in

Effect of the Copper Oxide Sintering Additive on the Electrical and Electrochemical Properties of Anode Materials Based on Sr2Fe1.5Mo0.5O6–δ

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The effect of introducing 1–3 wt % copper oxide sintering additive on the electrical and electrochemical characteristics of promising anode materials for solid oxide fuel cells based on Sr2Fe1.5Mo0.5O6–δ was studied. The total conductivity increases with increasing amount of copper oxide. The maximum conductivity in humid hydrogen at 800°C, 45 S cm–1, was reached on introducing 3 wt % CuO. The sintering additive enhances the electrochemical activity of Sr2Fe1.5Mo0.5O6–δ and Sr2Fe1.5Mo0.5O6–δCe0.8Sm0.2O1.9 anodes. A decrease in the sintering temperature of the anodes containing CuO with the electrolyte based on lanthanum gallate directly correlates with the electrochemical activity of the anodes. The minimum value of the polarization resistivity, 0.15 Ω cm2 at 800°С in a humid hydrogen atmosphere, was obtained for the composite anode with 3 wt % CuO sintered at a temperature of 1050°С.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jiang, S.P., J. Appl. Electrochem., 2004, vol. 34, pp. 1045–1055.

    Article  CAS  Google Scholar 

  2. Prakash, B.S., Kumar, S.S., and Aruna, S.T., Renew. Sustain. Energy Rev., 2014, vol. 36, pp. 149–179.

    Article  Google Scholar 

  3. Ruiz-Trejo, E., Azad, A.K., and Irvine, J.T.S., J. Electrochem. Soc., 2015, vol. 162, pp. F273–F279.

    Article  CAS  Google Scholar 

  4. Drozdz-Ciesla, E., Jolanta, J.W., and Rekas, B.M., J. Therm. Anal. Calorim., 2012, vol. 108, pp. 1051–1057.

    Article  CAS  Google Scholar 

  5. Hauch, A., Brodersen, K., Chen, M., and Mogensen, M.B., Solid State Ionics, 2016, vol. 293, pp. 27–36.

    Article  CAS  Google Scholar 

  6. Gabaly, F.E., McCarty, K.F., Bluhm, H., et al., PCCP, 2013, vol. 15, pp. 8334–8341.

    Article  Google Scholar 

  7. Khan, M.S., Lee, S.-B., Song, R.-H., et al., Ceram. Int., 2016, vol. 42, pp. 35–48.

    Article  CAS  Google Scholar 

  8. Osinkin, D.A., Bogdanovich, N.M., Beresnev, S.M., et al., J. Power Sources, 2015, vol. 288, pp. 20–25.

    Article  CAS  Google Scholar 

  9. Gotsch, T., Schachinger, T., Stoger-Pollach, M., et al., Appl. Surf. Sci., 2017, vol. 402, pp. 1–11.

    Article  Google Scholar 

  10. Osinkin, D.A., Int. J. Hydrogen Energy, 2016, vol. 41, pp. 17577–17584.

    Article  CAS  Google Scholar 

  11. Kolotygin, V.A., Tsipis, E.V., Shaula, A.L., et al., J. Solid State Electrochem., 2011, vol. 15, pp. 313–327.

    Article  CAS  Google Scholar 

  12. Pudmich, G., Boukamp, B.A., Gonzalez-Cuenca, M., et al., Solid State Ionics, 2000, vol. 135, pp. 434–438.

    Article  Google Scholar 

  13. Danilovic, N., Luo, J.L., Chuang, K.T., et al., J. Power Sources, 2009, vol. 194, pp. 252–262.

    Article  CAS  Google Scholar 

  14. Kolotygin, V.A., Tsipis, E.V., Ivanov, A.I., et al., J. Solid State Electrochem., 2012, vol. 16, pp. 2335–2348.

    Article  CAS  Google Scholar 

  15. Plint, S.M., Connor, P.A., Tao, S., et al., Solid State Ionics, 2006, vol. 177, pp. 2005–2008.

    Article  CAS  Google Scholar 

  16. Danilovic, N., Vincent, A., Luo, J.L., et al., Chem. Mater., 2010, vol. 22, pp. 957–965.

    Article  CAS  Google Scholar 

  17. Fu, Q.X., Tietz, F., and Stoever, D., J. Electrochem Soc., 2006, vol. 153, pp. D74–D83.

    Article  CAS  Google Scholar 

  18. Moos, R., Menesklou, W., Schreiner, H.J., et al., Sens. Actuators B, 2000, vol. 67, pp. 178–183.

    Article  CAS  Google Scholar 

  19. Hui, S. and Petric, A., Mater. Res. Bull., 2002, vol. 37, pp. 1215–1231.

    Article  CAS  Google Scholar 

  20. Wang, Z., Tian, Y., and Li, Y., J. Power Sources, 2011, vol. 196, pp. 6104–6109.

    Article  CAS  Google Scholar 

  21. Zhang, L., Zhou, Q., He, Q., et al., J. Power Sources, 2010, vol. 195, pp. 6356–6366.

    Article  CAS  Google Scholar 

  22. Miao, G., Yuan, C., Chen, T., et al., Int. J. Hydrogen Energy, 2016, vol. 41, pp. 1104–1111.

    Article  CAS  Google Scholar 

  23. Feng, J., Yang, G., Dai, N., et al., J. Mater. Chem. A, 2014, vol. 2, pp. 17628–17634.

    Article  CAS  Google Scholar 

  24. Hou, M., Sun, W., Li, P., et al., J. Power Sources, 2014, vol. 272, pp. 759–765.

    Article  CAS  Google Scholar 

  25. Zhang, T.S., Ma, J., Chan, L.B., et al., Solid State Ionics, 2004, vol. 167, pp. 203–207.

    Article  CAS  Google Scholar 

  26. Tsipis, E.V., Waerenborgh, J.C., and Kharton, V.V., J. Solid State Electrochem., 2017, vol. 21, pp. 2965–2974.

    Article  CAS  Google Scholar 

  27. Kolchugin, A.A., Pikalova, E.Yu., Bogdanovich, N.M., et al., Russ. J. Electrochem., 2015, vol. 51, no. 5, pp. 483–490.

    Article  CAS  Google Scholar 

  28. Kuzin, B.L., Bogdanovich, N.M., Bronin, D.I., et al., Russ. J. Electrochem., 2007, vol. 43, pp. 920–928.

    Article  CAS  Google Scholar 

  29. Ding, H., Sullivan, N.P., and Ricote, S., Solid State Ionics, 2017, vol. 306, pp. 97–103.

    Article  CAS  Google Scholar 

  30. Osinkin, D.A., Lobachevskaya, N.I., and Suntsov, A.Yu., J. Alloys Compd., 2017, vol. 708, pp. 451–455.

    Article  CAS  Google Scholar 

  31. Osinkin, D.A., Lobachevskaya, N.I., and Kuz’min, A.V., Russ. J. Appl. Chem., 2017, vol. 90, no. 1, pp. 41–46.

    Article  CAS  Google Scholar 

  32. Kotov, Yu.A., J. Nanoparticle Res., 2003, vol. 5, pp. 539–550.

    Article  Google Scholar 

  33. Gavrilyuk, A.L., Osinkin, D.A., and Bronin, D.I., Russ. J. Electrochem., 2017, vol. 53, pp. 575–588.

    Article  CAS  Google Scholar 

  34. Gorelov, V.P., Bronin, D.I., Sokolova, Ju.V., et al., J. Eur. Ceram. Soc., 2001, vol. 21, pp. 2311–2317.

    Article  CAS  Google Scholar 

  35. He, B., Zhao, L., Song, S., et al., J. Electrochem. Soc., 2012, vol. 159, pp. B619–B626.

    Article  CAS  Google Scholar 

  36. Osinkin, D.A., Kuzin, B.L., and Bogdanovich, N.M., Russ. J. Electrochem., 2009, vol. 45, no. 4, pp. 483–489.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Osinkin.

Additional information

Original Russian Text © D.A. Osinkin, N.I. Lobachevskaya, N.M. Bogdanovich, 2017, published in Zhurnal Prikladnoi Khimii, 2017, Vol. 90, No. 10, pp. 1371−1377.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osinkin, D.A., Lobachevskaya, N.I. & Bogdanovich, N.M. Effect of the Copper Oxide Sintering Additive on the Electrical and Electrochemical Properties of Anode Materials Based on Sr2Fe1.5Mo0.5O6–δ. Russ J Appl Chem 90, 1686–1692 (2017). https://doi.org/10.1134/S1070427217100196

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427217100196

Navigation