Advertisement

Russian Journal of Applied Chemistry

, Volume 90, Issue 10, pp 1674–1679 | Cite as

Preparation of a Film Electrolyte Based on Calcium Zirconate on a Porous Electrode by a Chemical Liquid-Phase Method

Applied Electrochemistry and Metal Corrosion Protection
  • 12 Downloads

Abstract

A modification of a solution method for preparing solid oxide electrolyte films was developed. It is based on using a suspension consisting of a solution of inorganic salts and of a nanodispersed precursor powder prepared from the same solution. As demonstrated by the example of calcium zirconate, this procedure allows the number of applications of the liquid-phase precursor, required to obtain a dense electrolyte film on a porous support, to be considerably decreased relative to the procedure using a salt solution. The influence of the concentration of the precursor powder in the suspension on the microstructure of CaZr0.9Y0.1O3–δ films was analyzed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yokokawa, H., Sakai, N., Horita, T., and Yamaji, K., Fuel Cells, 2001, vol. 1, no. 2, pp. 117–131.CrossRefGoogle Scholar
  2. 2.
    Cherng, J.S., Sau, J.R., and Chung, C.C., J. Solid State Electrochem., 2008, vol. 12, pp. 925–933.CrossRefGoogle Scholar
  3. 3.
    Minh, N.Q. and Takahashi, T., Science and Technology of Ceramic Fuel Cells, New York: Elsevier, 1995.Google Scholar
  4. 4.
    Joo, J.H. and Choi, G.M., Solid State Ionics, 2006, vol. 177, pp. 1053–1057.CrossRefGoogle Scholar
  5. 5.
    Wachsman, E.D. and Lee, K.T., Science, 2011, vol. 334, pp. 935–939.CrossRefGoogle Scholar
  6. 6.
    Kek, D., Panjan, P., Wanzenberg, E., and Jamnik, J., J. Eur.Ceram. Soc., 2001, vol. 21, pp. 1861–1865.CrossRefGoogle Scholar
  7. 7.
    Nandasiri, M.I. and Thevuthasan, S., Thin Film Structures in Energy Applications, Krishna Moorthy, S.B., Ed., Springer, 2015, pp. 167–214.Google Scholar
  8. 8.
    Gorelov, V.P., Balakireva, V.B., and Kuz’min, A.V., Phys. Solid State, 2016, vol. 58, no. 1, pp. 12–18.CrossRefGoogle Scholar
  9. 9.
    Hwang, S.C. and Choi, G.M., Solid State Ionics, 2008, vol. 179, pp. 1042–1045.CrossRefGoogle Scholar
  10. 10.
    Pratt, I.H., Proc. IEEE, 1971, vol. 59, no. 10, pp. 1440–1447.CrossRefGoogle Scholar
  11. 11.
    Kalinina, E.G., Safronov, A.P., and Efimov, A.A., Inorg. Mater., 2016, vol. 52, no. 12, pp. 1301–1306.CrossRefGoogle Scholar
  12. 12.
    García, P., Ferrari, B., Moreno, R., et al., J. Eur. Ceram. Soc., 2007, vol. 27, pp. 4241–4244.CrossRefGoogle Scholar
  13. 13.
    Hou, X. and Choy, K.-L., Chem. Vapor Depos., 2006, vol. 12, pp. 583–596.CrossRefGoogle Scholar
  14. 14.
    Gelfond, N.V., Bobrenok, O.F., Predtechensky, M.R., et al., Inorg. Mater., 2009, vol. 45, no. 6, pp. 659–665.CrossRefGoogle Scholar
  15. 15.
    Yamane, H. and Hirai, T., J. Cryst. Growth, 1989, vol. 94, pp. 880–884.CrossRefGoogle Scholar
  16. 16.
    Schlupp, M., Evans, A., Martynczuk, J., and Prestat, M., Adv. Energy Mater., 2014, vol. 4, pp. 1301383–1301389.CrossRefGoogle Scholar
  17. 17.
    Varanasi, V.G. and Besmann, T.M., in Proc. Electrochem. Soc.: Chemical Vapor Deposition XVI and EuroCVD 14, Pennington, NJ: Electrochem. Soc., 2003, vol. 2, pp. 783–789.Google Scholar
  18. 18.
    Ji, S., Chang, I., Lee, Y.H., et al., Nanoscale Res. Lett., 2013, vol. 8, no. 1, pp. 1–8.CrossRefGoogle Scholar
  19. 19.
    Dunyushkina, L.A., Smirnov, S.V., Kuimov, V.M., and Gorelov, V.P., Int. J. Hydrogen Energy, 2014, vol. 39, no. 32, pp. 18385–18391.CrossRefGoogle Scholar
  20. 20.
    Dunyushkina, L.A., Plaksin, S.V., and Kuimov, V.M., Ionics, 2013, pp. 1715–1722.Google Scholar
  21. 21.
    Dunyushkina, L.A., Kuimov, V.M., Pankratov, A.A., et al., Russ. J. Electrochem., 2016, vol. 52, no. 11, pp. 1057–1063.CrossRefGoogle Scholar
  22. 22.
    Dunyushkina, L.A., Pankratov, A.A., Gorelov, V.P., et al., Electrochim. Acta, 2016, vol. 202, pp. 39–46.CrossRefGoogle Scholar
  23. 23.
    Xia, C., Zha, S., and Yang, W., Solid State Ionics, 2000, vol. 133, pp. 287–294.CrossRefGoogle Scholar
  24. 24.
    Chen, C.C., Nasrallah, M.M., and Anderson, H.U., Solid State Ionics, 1994, vols. 70–71, pp. 101–108.Google Scholar
  25. 25.
    Dunyushkina, L.A., Kuimov, V.M., Kuz’min, A.V., et al., Russ. J. Electrochem., 2017, vol. 53, no. 2, pp. 196–204.CrossRefGoogle Scholar
  26. 26.
    Kurteeva, A.A., Beresnev, S.M., Osinkin, D.A., et al., Russ. J. Electrochem., 2011, vol. 47, pp. 1381–1388.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of High-Temperature Electrochemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations