Russian Journal of Applied Chemistry

, Volume 90, Issue 10, pp 1620–1626 | Cite as

DFT Study of Cyanide Oxidation on Ge-Doped Carbon Nanotubes

  • Meysam Najafi
Various Technological Processes


In recent years, the discovery of efficient catalyst with low price to cyanide (CN) oxidation in normal temperature is a major concern in the industry. In present study, in first step the carbon nanotubes (CNTss) were doped with Ge and the surface of Ge-doped CNTss via O2 molecule were activated. In second step the CN oxidation on activated Ge-CNTss surface via Langmuir–Hinshelwood (LH) and Eley–Rideal (ER) mechanisms was investigated. Results show that O2 activated Ge-CNTs surface can oxidize the CN molecule via Ge-CNTs–O–O* + CN → Ge-CNTs–O–O*–CN → Ge-CNTs–O* + OCN and Ge-CNTs–O* + CN → Ge-CNTs + OCN reactions. Results show that CN oxidation on activated Ge-CNTs surface via the LH mechanism has lower energy barrier than ER mechanism. Finally, calculated parameters reveal that activated Ge-CNTss is acceptable catalyst with low price and high performance for CN oxidation in normal temperature.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fu, Q., Gu, X.K., Chen, L., Wang, Z., and Zhang, H., Science, 2010, vol. 328, pp. 1141–1144.CrossRefGoogle Scholar
  2. 2.
    Royer, S. and Duprez, D., Chem. Cat. Chem., 2011, vol. 3, pp. 24–65.Google Scholar
  3. 3.
    Peterson, E.J., Nat. Commun., 2014, vol. 5, p. 4885.CrossRefGoogle Scholar
  4. 4.
    Hendriksen, B. and Frenken, J., Phys. Rev. Lett., 2002, vol. 9, 046101.CrossRefGoogle Scholar
  5. 5.
    Eichler, A., Surf. Sci., 2002, vol. 498, pp. 314–320.CrossRefGoogle Scholar
  6. 6.
    Lopez, N. and Janssens, T., J. Catal., 2004, vol. 223, pp. 232–235.CrossRefGoogle Scholar
  7. 7.
    Freund, H.J., Meijer, G., and Scheffler, M., Angew. Chem., 2011, vol. 50, pp. 10064–10094.CrossRefGoogle Scholar
  8. 8.
    Johnson, R.S., DeLaRiva, A., and Ashbacher, V., Phys. Chem. Chem. Phys., 2013, vol. 15, pp. 7768–7776.CrossRefGoogle Scholar
  9. 9.
    Su, H.Y., Yang, M.M., Bao, X.H., and Li, W.X., J. Phys. Chem. C, 2008, vol. 112, pp. 17303–17310.CrossRefGoogle Scholar
  10. 10.
    Chen, M.S., Cai, Y., and Yan, Z., Surf. Sci., 2007, vol. 601, pp. 5326–5331.CrossRefGoogle Scholar
  11. 11.
    Piccinin, S. and Stamatakis, M., ACS Catal., 2014, vol. 4, pp. 2143–2152.CrossRefGoogle Scholar
  12. 12.
    Liu, W., Zhu, Y., Lian, J., and Jiang, Q., J. Phys. Chem. C, 2007, vol. 111, pp. 1005–1009.CrossRefGoogle Scholar
  13. 13.
    Liu, D.J., J. Phys. Chem. C, 2007, vol. 111, pp. 14698–14706.CrossRefGoogle Scholar
  14. 14.
    Wallace, W.T. and Whetten, R.L., J. Am. Chem. Soc., 2002, vol. 124, pp. 7499–7505.CrossRefGoogle Scholar
  15. 15.
    Chang, C., Cheng, C., and Wei, C., J. Chem. Phys., 2008, vol. 128, pp. 124710–124710.CrossRefGoogle Scholar
  16. 16.
    Du, J., Wu, G., and Wang, J., J. Phys. Chem. A, 2010, vol. 114, pp. 10508–10514.CrossRefGoogle Scholar
  17. 17.
    Molina, L. and Hammer, B., Phys. Rev. Lett., 2003, vol. 90, 206102.CrossRefGoogle Scholar
  18. 18.
    Gong, X.Q., Liu, Z.P., Raval, R., and Hu, P., J. Am. Chem. Soc., 2004, vol. 126, pp. 8–9.CrossRefGoogle Scholar
  19. 19.
    Zhang, Y., Tan, Y.-W., Stormer, H.L., and Kim, P., Nature, 2005, vol. 438, pp. 201–204.CrossRefGoogle Scholar
  20. 20.
    Kan, E., Li, Z., and Yang, J., Nano, 2008, vol. 3, pp. 433–442.CrossRefGoogle Scholar
  21. 21.
    Ci, L., Xu, Z., Wang, L., Gao, W., Ding, F., Nano Res., 2008, vol. 1, pp. 116–122.CrossRefGoogle Scholar
  22. 22.
    Lee, C., Wei, X., Kysar, J.W., and Hone, J., Science, 2008, vol. 321, pp. 385–388.CrossRefGoogle Scholar
  23. 23.
    Novoselov, K.S., Geim, A.K., and Morozov, S., Science, 2004, vol. 306, pp. 666–669.CrossRefGoogle Scholar
  24. 24.
    Geim, A.K. and Novoselov, K.S., Nat. Mater., 2007, vol. 6, pp. 183–191.CrossRefGoogle Scholar
  25. 25.
    Morozov, S., Novoselov, K., and KatGeelson, M., Phys. Rev. Lett., vol. 100, 2008, 016602.CrossRefGoogle Scholar
  26. 26.
    Geim, A.K., Science, 2009, vol. 324, pp. 1530–1534.CrossRefGoogle Scholar
  27. 27.
    Ratinac, K.R., Yang, W., Ringer, S.P., and Braet, F., Environ. Sci. Technol., 2010, vol. 44, pp. 1167–1176.CrossRefGoogle Scholar
  28. 28.
    Hornes, A. and Hungria, A.B., J. Am. Chem. Soc., 2010, vol. 132, p. 34.CrossRefGoogle Scholar
  29. 29.
    Hu, X., Wu, Y., and Zhang, Z., J. Mater. Chem., 2012, vol. 22, p. 15198.CrossRefGoogle Scholar
  30. 30.
    Y. Tang, X. Dai, Z. Yang, Z. Liu, L. Pan, D. Ma, Z. Lu, Carbon, 2014, vol. 71, p. 139.CrossRefGoogle Scholar
  31. 31.
    Li, Y., Zhou, Z., Yu, G., Chen, W., and Chen, Z., J. Phys. Chem. C, 2010, vol. 114, p. 6250.CrossRefGoogle Scholar
  32. 32.
    Song, E.H., Wen, Z., and Jiang, Q., J. Phys. Chem. C, 2011, vol. 115, pp. 3678.CrossRefGoogle Scholar
  33. 33.
    Tang, Y., Yang, Z., and Dai, X., Phys. Chem. Chem. Phys., 2012, vol. 14, p. 16566.CrossRefGoogle Scholar
  34. 34.
    Tang, Y., Liu, Z., Dai, X., Yang, Z., Chen, W., and Lu, Z., Appl. Surf. Sci., vol. 308, 2014, p. 402.CrossRefGoogle Scholar
  35. 35.
    Lin, S., Ye, X., and Huang, J., Phys. Chem. Chem. Phys., vol. 17, 2015, p. 888.CrossRefGoogle Scholar
  36. 36.
    Tawfik, S.A., Cui, X.Y., Carter, D.J., and Stampfl, C., Phys. Chem. Chem. Phys., 2015, vol. 17, p. 6925.CrossRefGoogle Scholar
  37. 37.
    Davies, A.G., Organotin Chemistry, 2nd ed., Wiley-VCH, Weinheim, 2004.CrossRefGoogle Scholar
  38. 38.
    Song, H., Zhang, L., He, C., Qu, Y., Tian, Y., and Lv, Y., J. Mater. Chem., 2011, vol. 21, p. 5972.CrossRefGoogle Scholar
  39. 39.
    Zhou, Q., Wang, C., Fu, Z., Tang, Y., and Zhang, H., Comput. Mater. Sci., 2014, vol. 83, pp. 398–402.CrossRefGoogle Scholar
  40. 40.
    Krasheninnikov, A.V., Lehtinen, P.O., and Foster, A.S., Phys. Rev. Lett., 2009, p. 102.Google Scholar
  41. 41.
    Li, F., Zhao, J., Chen, Z., J. Phys. Chem. C, 2012, vol. 16, pp. 2507–2514.CrossRefGoogle Scholar
  42. 42.
    Wang, X., Li, X., Zhang, L., Yoon, Y., Weber, P.K., Science, 2009, vol. 324, pp. 768–771.CrossRefGoogle Scholar
  43. 43.
    Reddy, A.L.M., Srivastava, A., Gowda, S.R., and Gullapalli, H., ACS Nano, 2010, vol. 4, pp. 6337–6342.CrossRefGoogle Scholar
  44. 44.
    Zhao, Y. and Truhlar, D.G., Theor. Chem. Acc., 2008, vol. 120, pp. 215–241.CrossRefGoogle Scholar
  45. 45.
    Andzelm, J. and Kolmel, C., J. Chem. Phys., 1995, 103, pp. 9312–9320.CrossRefGoogle Scholar
  46. 46.
    Gan, L.H. and Zhao, J.Q., Physica E, 2009, vol. 41, pp. 1249–1252.CrossRefGoogle Scholar
  47. 47.
    Boys, S.F. and Bernardi, F., Mol. Phys., 1970, vol. 19, pp. 553–566.CrossRefGoogle Scholar
  48. 48.
    Ma, L., Zhang, J.M., Xu, K.W., and Ji, V., Appl. Surf. Sci., 2015, vol. 343, pp. 121–127.CrossRefGoogle Scholar
  49. 49.
    Zhang, T., Xue, Q., Shan, M., and Jiao, Z., J. Phys. Chem. C, 2012, vol. 116, pp. 19918–19924.CrossRefGoogle Scholar
  50. 50.
    Wu, M., Cao, C., Jiang, J., N. J. Phys., 2010, vol. 12, 063020.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Young Researchers and Elite Club, Kermanshah BranchIslamic Azad UniversityKermanshahIran

Personalised recommendations