Russian Journal of Applied Chemistry

, Volume 90, Issue 10, pp 1586–1591 | Cite as

Mechanically Stimulated Thermal Synthesis of Lithium Pentaaluminate from Lithium Carbonate and Aluminum Hydroxide

Inorganic Synthesis and Industrial Inorganic Chemistry
  • 4 Downloads

Abstract

It is shown that the phase composition of lithium aluminates formed when aluminum hydroxide in the form of gibbsite interacts with lithium carbonate in their mixture with Al: Li atomic ratio of 5: 1 depends on the duration of a preliminary mechanical activation of the mixture and on the temperature of the subsequent thermal treatment. A thermal treatment of the starting mixture at temperatures exceeding 800°C yields LiAl5O8 with a substantial admixture of α- and γ-LiAlO2. Raising the duration of the mechanical activation to 5 min and more makes it possible to obtain highly dispersed single-phase LiAl5O8 with a specific surface area larger than 20 m2 g–1

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ge, Y., Dong, Y., Wang, S. et al., Front. Chem. Sci. Eng., 2012, vol. 6, no. 4, pp. 415–422.CrossRefGoogle Scholar
  2. 2.
    US Patent 6 184 416 (publ. 2000).Google Scholar
  3. 3.
    Hashimoto, S., Hattori, K., Inoue, K., et al., Mater. Res. Bull., 2009, vol. 44, no. 1, pp. 70–73.CrossRefGoogle Scholar
  4. 4.
    Singh, V., Chakradhar, R.P.S., and Rao, J.L., Mater. Chem. Phys., 2008, vol. 110, no. 1, pp. 43–51.CrossRefGoogle Scholar
  5. 5.
    Singh, V. and Gundu Rao, T.K., J. Solid State Chem., 2008, vol. 181, no. 6, pp. 1387–1392.CrossRefGoogle Scholar
  6. 6.
    Famery, R. and Queyroux, F., J. Solid State Chem., 1979, vol. 30, no. 2, pp. 257–263.CrossRefGoogle Scholar
  7. 7.
    Aoyama, M., Amano, Y., Inoue, K.S., et al., J. Lumin., 2013, vol. 135, pp. 211–215.CrossRefGoogle Scholar
  8. 8.
    Kong, L.B., Zhang, T.S., Ma, J., and Boey, F., Prog. Mater. Sci., 2008, vol. 53, pp. 207–322.CrossRefGoogle Scholar
  9. 9.
    Avvakumov, E.G., Senna, M., and Kosova, N.V., Soft Mechanochemical Synthesis: A Basis for New Chemical Technologies, Dordrecht: Kluwer Acad. Publ., 2001.Google Scholar
  10. 10.
    Isupov, V.P., Trukhina, Ya.E., Eremina, N.V., et al., Inorg. Mater., 2016, vol. 52, no. 11, pp. 1189–1197.CrossRefGoogle Scholar
  11. 11.
    Slade, R.C.T., Southern, J.C., and Thompson, I.M., J. Mater. Chem., 1991, vol. 1(4), pp. 563–568.CrossRefGoogle Scholar
  12. 12.
    John, J.C.S., Alma, N.C.M., and Hays, G.R., Appl. Catal., 1983, vol. 6, pp. 341–346.CrossRefGoogle Scholar
  13. 13.
    Marezio, M. and Remeika, J.P., J. Chem. Phys., 1966, vol. 43, pp. 3143–3144.CrossRefGoogle Scholar
  14. 14.
    Kriens, M., Adiwidjaja, G., Guse, W., et al., N. Jb. Miner. Mh., 1996, no. 8, pp. 344–350.Google Scholar
  15. 15.
    Danek, V., Tarniowy, M., and Suski, L., J. Mater. Sci., 2004, vol. 39, no. 7, pp. 2429–2435.CrossRefGoogle Scholar
  16. 16.
    MacKenzie, K.J.D, Temuujin, J., and Okada, K., Thermochim. Acta, 1999, vol. 327, pp. 103–108.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. P. Isupov
    • 1
  • N. V. Eremina
    • 1
  • I. A. Borodulina
    • 1
  1. 1.Institute of Solid State Chemistry and Mechanochemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations