Russian Journal of Applied Chemistry

, Volume 90, Issue 10, pp 1579–1585 | Cite as

Synthesis of Highly Dispersed Zirconium Diboride for Fabrication of Special-Purpose Ceramic

  • Yu. L. Krutskii
  • E. A. Maksimovskii
  • M. V. Popov
  • O. V. Netskina
  • T. M. Krutskaya
  • N. Yu. Cherkasova
  • T. S. Kvashina
  • E. A. Drobyaz
Inorganic Synthesis and Industrial Inorganic Chemistry


Reduction of zirconium dioxide with boron carbide and nanofibrous carbon in argon yielded a highly dispersed powder of zirconium diboride. Characteristics of zirconium diboride powders were examined by various analytical methods. The material obtained is represented by a single phase, zirconium diboride. Powder particles are for the most part aggregated. The average size of particles and aggregates is 10.9–12.9 μm with a wide size distribution. The specific surface area of the samples is 1.8–3.6 m2 g–1. The oxidation of zirconium diboride begins at a temperature of 640°C The optimal synthesis parameters were determined: ZrO2: B4C: C molar ratio of 2: 1: 3 (in accordance with stoichiometry), process temperature 1600–1700°C, synthesis duration 20 min.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Serebryakova, T.I., Neronov, V.A., and Peshev, P.D., Vysokotemperaturnye boridy (High-Temperature Borides), Moscow: Metallurgiya, Chelyabinsk. otd., 1991.Google Scholar
  2. 2.
    Mroz, C., Am. Ceram. Soc. Bull., 1995, vol. 74, pp. 158–159.Google Scholar
  3. 3.
    Fahrenholtz, G., Hilmas, G.E., Talmy, I.G., and Zaykoski, J.A., J. Am. Ceram. Soc., 2007, vol. 90, pp. 1347–1364.CrossRefGoogle Scholar
  4. 4.
    Sonber, J.K. and Suri, A.K., Adv. Appl. Ceram., 2011, vol. 110, pp. 321–334.CrossRefGoogle Scholar
  5. 5.
    Monteverde, F., Savino, R., and Fumo, M.S.D., Corros. Sci., 2011, vol. 53, pp. 922–929.CrossRefGoogle Scholar
  6. 6.
    Zou, X., Fu, Q., Liu, L., et al., Surf. Coat. Technol., 2013, vol. 226, pp. 17–21.CrossRefGoogle Scholar
  7. 7.
    Neuman, E.W., Hilmas, G.E., and Fahrenholtz, W.G., J. Eur. Ceram. Soc., 2013, vol. 33, pp. 2889–2899.CrossRefGoogle Scholar
  8. 8.
    Mishra, S.K., Das, S., and Ramchandrarao, P., J. Mater. Res., 2002, vol. 17, pp. 2809–2814.CrossRefGoogle Scholar
  9. 9.
    Setoudeh, N. and Welham, N.J., J. Alloys Compd., 2006, vol. 420, pp. 225–228.CrossRefGoogle Scholar
  10. 10.
    Khanra, A.K., Mater. Res. Bull., 2007, vol. 42, pp. 2224–2229.CrossRefGoogle Scholar
  11. 11.
    Khanra, A.K., Pathak, L.C., and Godkhindi, M.M., J. Mater. Process. Technol., 2008, vol. 202, pp. 386–390.CrossRefGoogle Scholar
  12. 12.
    Jalaly, M., Bafghi, M.Sh., Tamizifar, M., and Gotor, E.J., J. Alloys Compd., 2014, vol. 588, pp. 36–41.CrossRefGoogle Scholar
  13. 13.
    Zhou, F., Zhengyi, F., Hao, W., et al., J. Wuhan Univ. Technol.- Mater. Sci. Ed., 2005, vol. 20, pp. 87–89.CrossRefGoogle Scholar
  14. 14.
    Rao, L., Gillan, E.G., and Caner, R.B., J. Mater. Res., 1995, vol. 10, pp. 353–361.CrossRefGoogle Scholar
  15. 15.
    Millet, P. and Hwang, T., J. Mater. Sci., 1996, vol. 31, pp. 351–355.CrossRefGoogle Scholar
  16. 16.
    Ran, S., Van der Biest, O., and Vleugels, J., J. Am. Ceram. Soc., 2010, vol. 93, pp. 1586–1590.Google Scholar
  17. 17.
    Li, R., Lou, H., Yin, S., et al., J. Alloys Compd., 2011, vol. 509, pp. 8581–8583.CrossRefGoogle Scholar
  18. 18.
    Guo, W.-M. and Zhang, G.-J., J. Am. Ceram. Soc., 2011, vol. 94, pp. 3702–3705.CrossRefGoogle Scholar
  19. 19.
    Chen, B.L. Yang, L., Heng, H., et al., J. Solid State Chem., 2012, vol. 194, pp. 219–224.CrossRefGoogle Scholar
  20. 20.
    Radev, D.D. and Klissurski, D., J. Mater. Synth. Process, 2001, vol. 9, pp. 131–136.CrossRefGoogle Scholar
  21. 21.
    Çamurlu, H.E. and Maglia, F., J. Eur. Ceram. Soc., 2009, vol. 29, pp. 1501–1506.CrossRefGoogle Scholar
  22. 22.
    Guo, S., Hu, C., and Kagawa, Y., J. Am. Ceram. Soc., 2011, vol. 94, pp. 3643–3647.CrossRefGoogle Scholar
  23. 23.
    Lou, H., Li, R., Zhang, Y., et al., Rare Met., 2011, vol. 30, pp. 548–551.CrossRefGoogle Scholar
  24. 24.
    Jung, E.-Y., Kim, J.-H., Jung, S.-H., and Choi, S.-C., J. Alloys Compd., 2012, vol. 538, pp. 164–168.CrossRefGoogle Scholar
  25. 25.
    Schwab, S.T., Stewart, S.A., Dudeck, K.W., et al., J. Mater. Sci., 2004, vol. 39, pp. 6051–6055.CrossRefGoogle Scholar
  26. 26.
    Yan, Y., Huang, Z., Dong, S., and Jiang, D., J. Am. Ceram. Soc., 2006, vol. 89, pp. 3585–3588.CrossRefGoogle Scholar
  27. 27.
    Li, R., Zhang, Y., Lou, H., et al., J. Sol-Gel Sci. Technol., 2011, vol. 58, pp. 580–585.CrossRefGoogle Scholar
  28. 28.
    Zhang, Y., Li, R., Jiang, Y., et al., J. Solid State Chem., 2011, vol. 184, pp. 2047–2052.CrossRefGoogle Scholar
  29. 29.
    Hie, C., Chen, M., Wei, X., et al., J. Am. Ceram. Soc., 2012, vol. 95, pp. 866–869.Google Scholar
  30. 30.
    Cheng, G., Int. J. Refract. Met. Hard Mater.. 2013, vol. 36, pp. 149–153.CrossRefGoogle Scholar
  31. 31.
    Guo, W.-M. and Zhang, G.-J., J. Am. Ceram. Soc., 2009, vol. 92, pp. 264–267.CrossRefGoogle Scholar
  32. 32.
    Sonber, J.K., Murthy, T.S.R.Ch., Subramanian, C., et al., Int. J. Refract. Met. Hard Mater., 2011, vol. 29, pp. 21–30.CrossRefGoogle Scholar
  33. 33.
    Qiu, H.-Y., Guo, W.-M., Zou, J., and Zhang, G.-J., Powder Technol., 2012, vol. 217, pp. 462–466.CrossRefGoogle Scholar
  34. 34.
    Kuvshinov, G.G., Popov, M.V., Tonkodubov, S.E., et al., Russ. J. Appl. Chem., 2016, vol. 89, no. 11, pp. 1777–1785.CrossRefGoogle Scholar
  35. 35.
    Krutskii, Yu.L, Bannov, A.G., Sokolov, V.V., et al., Nanotech. Russ., 2013, no. 8, pp. 191–198.CrossRefGoogle Scholar
  36. 36.
    Krutskii, Yu.L., Dyukova, K.D., Bannov, A.G., et al., Russ. J. Adv. Mater., 2015, no. 3, pp. 55–62).Google Scholar
  37. 37.
    Krutskii, Yu.L., Bannov, A.G., Antonova, E.V., et al., Ceram. Interfaces, 2016, vol. 43, pp. 3212–3217.CrossRefGoogle Scholar
  38. 38.
    Svoistva, poluchenie i primenenie tugoplavkikh soedinenii: Spravochnik (Properties, Synthesis, and Application of High-Melting Compound: Refernce Book), Kosolapova, T.Ya., Ed., Moscow: Metallurgiya, 1986.Google Scholar
  39. 39.
    Kornienko, E.E., Nikulina, A.A., Bannov, A.G., et al., Metal Work. & Mat. Sci., 2016, no. 4, pp. 52–56.Google Scholar
  40. 40.
    Novyi spravochnik khimika i tekhnologa. Osnovnye svoistva neorganicheskikh, organicheskikh i elementoorganicheskikh soedinenii: Spravochnik (New Chemist’s and Technologist’s Handbook, Basic Properties of Organoelement Compounds: Reference Book), Skvortsov, N.K., Moskvin, A.V., Simanova, S.A., and Stolyarova, V.A., Eds., St. Petersburg: ANO NIO Mir i sem’ya, 2002.Google Scholar
  41. 41.
    Svoistva elementov: Spravochnik (Properties of Elements: Reference Book), Drits, M.E., Ed., Moscow: Metallurgiya, 1985.Google Scholar
  42. 42.
    West, A.R., Solid State Chemistry and Its Applications, Chichester: Wiley, 1984.Google Scholar
  43. 43.
    Blott, S.J. and Pye, K., Earth Surf. Processes Landforms, 2001, vol. 26, pp. 1237–1248.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Yu. L. Krutskii
    • 1
  • E. A. Maksimovskii
    • 2
    • 3
  • M. V. Popov
    • 1
  • O. V. Netskina
    • 3
    • 5
  • T. M. Krutskaya
    • 4
  • N. Yu. Cherkasova
    • 1
  • T. S. Kvashina
    • 1
  • E. A. Drobyaz
    • 1
  1. 1.Novosibirsk State Technical UniversityNovosibirskRussia
  2. 2.Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia
  4. 4.Novosibirsk State Architectural-Constructional UniversityNovosibirskRussia
  5. 5.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations