Russian Journal of Applied Chemistry

, Volume 90, Issue 10, pp 1572–1578 | Cite as

Structure and Thermal Stability of Nanostructured Precursor Powders of Copper(I) Sulfide and Selenide

  • L. N. Maskaeva
  • V. F. Markov
  • E. A. Fedorova
  • I. A. Berg
  • R. F. Samigullina
  • V. I. Voronin
Inorganic Synthesis and Industrial Inorganic Chemistry


The hydrochemical precipitation method at 298 and 333 K with, respectively, thiocarbamide and sodium selenosulfate was used to obtain nanostructured powders of copper sulfide with formula composition Cu2S, which are composed of globules 200–500 nm in diameter, formed by 70–100-nm particles, and copper(I) selenide, composed of crystallites with polyhedral shape, sizes of 80 to 500 nm, and a formula composition Cu1.84Se. An X-ray diffraction analysis revealed the orthorhombic Cu2S structure (space group no. 39-Abm2) with unit cell parameters a = 1.182 nm, b = 2.705 nm, and c = 1.343 nm. Powders of Cu1.84Se copper selenide have a cubic structure (space group Fm3m) with lattice constant a = 0.5693 nm. A thermal analysis demonstrated that the chemically precipitated Cu2S and Cu1.84Se powders have a stable elemental composition up to 200–240°C. An intense oxidation of the samples begins at a temperature exceeding 250°C and is accompanied by a sharp decrease in their content of sulfur (selenium) and by an increase in the content of oxygen.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Markov, V.F., Maskaeva, L.N., and Ivanov, P.N., Gidrokhimicheskoe osazhdenie plenok: modelirovanie, eksperiment (Electrochemical Deposition of Films: Simulation, Experiment), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2006.Google Scholar
  2. 2.
    Sateesh, P. and Madhusudhanarao, P., Int. J. Adv. Res. Phys. Sci., 2015, vol. 2, no. 11, pp. 11–16.Google Scholar
  3. 3.
    Kumar, S.A, Swati, M., and Sheel, T.G., Austin Chem. Eng., 2014, vol. 1, no. 1, pp. 01–05.Google Scholar
  4. 4.
    Suresh, S., Raveendra Reddy, C., Suresh Babu, G., and Veera Reddy, T., Int. J. Sci. Develop. Res., 2016, vol. 1, no. 9, pp. 244–249.Google Scholar
  5. 5.
    Cho, A., Ahn, S., Yun, J.H., et al., Thin Solid Films, 2013, vol. 546, pp. 299.CrossRefGoogle Scholar
  6. 6.
    Filippo, E., Manno, D., and Serra, A., J. Alloys Compd,, 2012, vol. 538, p. 8.CrossRefGoogle Scholar
  7. 7.
    More, P., Dhanayat, S., Gattu, K., et al., AIP Conf. Proc., 2016, vol. 1728, no. 1, p. 020489.CrossRefGoogle Scholar
  8. 8.
    Lige Liu, Bin Zhou, Luogen Dengand, et al., J. Phys. Chem. C, 2014, vol. 118, no. 46, pp. 26964–26972.CrossRefGoogle Scholar
  9. 9.
    García, V.M., Guerrero, L., Nair, M.T.S., and Nair, P.K., Superficies Vacío, 1999, no. 9, pp. 213–218.Google Scholar
  10. 10.
    Santos Cruz, J., Mayén Hernández, S.A., Coronel Hernández, J.J., et al., Chalcogenide Lett., 2012, vol. 9, no. 2, pp. 85–91.Google Scholar
  11. 11.
    Muradov, M.B., Eivazova, G.M., and Elchiev, Ya.M., Prikl. Fiz., 2005, no. 5, pp. 94–97.Google Scholar
  12. 12.
    Chattraki, A.N., Kamble, S.S., and Deshmukh, L.P., Mater. Lett., 2012, no. 67, pp. 39–41.CrossRefGoogle Scholar
  13. 13.
    Obaid, A.S., Mahdi, M.A., Hassan, Z., and Bououdina, M., Superlattices Microstruct., 2012, no. 52, pp. 816–823.CrossRefGoogle Scholar
  14. 14.
    Klochko, N.P., Khrypunov, G.S., Kopach, V.R., et al., Semiconductors, 2014, vol. 48, no. 4, pp. 521–530.CrossRefGoogle Scholar
  15. 15.
    Kvaratskheliya, R.K., Elektrokhimiya gidroksilamina (Electrochemistry of Hydroxylamine), Tbilisi: Metsniereba, 1981.Google Scholar
  16. 16.
    Quantitative Data File for Ore Minerals, Criddle, A.J. and Stanley, C.J., Eds., London: Chapman & Hall, 1993, 3rd ed., p.157.Google Scholar
  17. 17.
    Andreev, O.V., Sikerina, N.V., and Solov’eva, A.V., Russ. J. Inorg. Chem., 2005, vol. 50, no. 10, p. 1586.Google Scholar
  18. 18.
    Balapanov, M.Kh., Ishembetov, R.Kh., Kuterbekov, K.A., et al., Pis’ma Mater., 2016, vol. 6, no. 4(24), pp. 360–365.Google Scholar
  19. 19.
    Khomane, A.S., Arch. Appl. Sci. Res., 2012, vol. 4, p. 1857.Google Scholar
  20. 20.
    Papadimitropoulos, G., Vourdas, N., Vamvakas, V., and Da vazoglou, D., J. Phys.: Conf. Ser., 2005, vol. 10, pp. 182–185.Google Scholar
  21. 21.
    Maskaeva, L.N., Glukhova, I.A., Markov, V.F., et al., Butlerov. Soobshch., 2016, vol. 45, no. 3, pp. 24–35.Google Scholar
  22. 22.
    Maskaeva, L.N., Glukhova, I.A., Markov, V.F., et al., Russ. J. Appl. Chem., 2016, vol. 89, no. 12, pp. 1939–1947.CrossRefGoogle Scholar
  23. 23.
    Grigor’yan, E.G., Khim. Zh. Armenii, 2009, vol. 62, nos. 1–2, pp. 23–29.Google Scholar
  24. 24.
    Lidin, R.A., Molochko, V.A., and Andreeva, L.L., Neorganicheskaya khimiya v reaktsiyakh. Spravochnik (Inorganic Chemistry in Reactions: Reference Book), Moscow: Drofa, 2007, 2nd ed. rev. and suppl.Google Scholar
  25. 25.
    Giaccherini, A., Cinotti, S., Capolupo, F., et al., Period. Mineral., ECMS, 2015, pp. 79–80.Google Scholar
  26. 26.
    Selivanov, E.N., Gulyaeva, R.I., and Vershinin, A.D., Neorg. Mater., 2007, vol. 43, no. 6, pp. 653–658.CrossRefGoogle Scholar
  27. 27.
    Machado, K.D., de Lima, J.C., Grandi, T.A., et al., Acta Crystallogr., Sect. B: Struct. Sci., 2004, vol. 60, p. 282.CrossRefGoogle Scholar
  28. 28.
    Korshunov, A.V. and Il’in, A.P., Izv. Tomsk. Politekhn. Univ., 2008, vol. 313, no. 3, pp. 5.Google Scholar
  29. 29.
    Ponyatovski, E.G., Abrosimova, G.E., Aronin, A.S., et al., Phys. Solid. State, 2002, vol. 44, no. 5, p. 852.CrossRefGoogle Scholar
  30. 30.
    Taskinen, P., Patana, S., Kobylin, P., and Latostenmaa, P., High Temp. Mater. Processes, 2014, vol. 33, p. 469.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • L. N. Maskaeva
    • 1
    • 2
  • V. F. Markov
    • 1
    • 2
  • E. A. Fedorova
    • 1
  • I. A. Berg
    • 1
  • R. F. Samigullina
    • 3
  • V. I. Voronin
    • 4
  1. 1.Ural Federal University Named after the First President of Russia B.N.YeltsinYekaterinburgRussia
  2. 2.Ural Institute of State Fire Service of EMERCOM of RussiaYekaterinburgRussia
  3. 3.The Institute of Solid State Chemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  4. 4.Mikheev Institute of Metal Physics, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations