Russian Journal of Applied Chemistry

, Volume 90, Issue 10, pp 1640–1647 | Cite as

Microstructural Study of Nylon-6/Gelatin Composite Nanofibers

Various Technological Processes
  • 2 Downloads

Abstract

Electrospinning is a simple and effective technology for fabricating nanofibers and polymer blending provides strength and minimal defects of electrospun ones. Therefore, in the present study, fabrication, and characterization of nylon-6/gelatin electrospun nanofibers using low-toxic solvents was investigated as means to improve the morphological deficiencies of gelatin nanofibers and facilitate its electrospinnability. The morphology of electrospun nylon-6/gelatin nanofibers were characterized using scanning electron microscope (SEM). SEM results showed that electrospun blend nanofibers had smooth surface with average diameter of from 40 to 100 nm; while, the miscibility of the blend and thermal behavior of nanofibers were determined using Fourier transform-infrared spectroscopy (FTIR) and differential scanning calorimeter (DSC). Water contact-angle measurement (WCA) was employed to investigating the wettability of nanofibers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Panthi, G., Barakat, N., Risal, P., Yousef, A., Pant, B., Unnithan, R., and Yong Kim, H., Fibers & Polymers, 2013, vol. 14, no. 5, pp.718–723,.CrossRefGoogle Scholar
  2. 2.
    Maleknia, L. and Rezazadeh Majdi, Z., Orient. J. Chem, 2014, vol. 30, no. 4, pp. 2043–2048.CrossRefGoogle Scholar
  3. 3.
    Niu, H., Wang, Z., and Lin, T., Needleless Electrospinning: Developments and Performances, Nanofibers–Production, Properties and Functional Applications, InTech, 2011.Google Scholar
  4. 4.
    Ladd, M., Hill., T, Yoo., J., and Lee, S., Electrospun Nanofibers in Tissue Engineering, Nanofibers Production, Properties and Functional Applications, InTech, 2011.Google Scholar
  5. 5.
    Fang, J., Wang, X., and Lin, T., Functional Applications of Electrospun Nanofibers, Nanofibers Production, Properties and Functional Applications, InTech, 2011.Google Scholar
  6. 6.
    Mirjalili, M. and Zohoori, S., J. Nanostruct. Chem., 2016, vol. 6, pp. 207–213.CrossRefGoogle Scholar
  7. 7.
    Jeong, L. and Park, W.H., Int. J. Mol., 2014, vol. 15, pp. 6857–6879.CrossRefGoogle Scholar
  8. 8.
    Lim, Y.C., Johnson, J., Fei, Z., Wu, Y., Farson, D.F., Lannutti, J., and Choi, H.W., Biotech. & Bioeng., 2011, vol. 108, no. 1, pp. 116–126.CrossRefGoogle Scholar
  9. 9.
    Meng, Z.X., Wang, Y.S., Maa, C., Zheng, W., Li, L., and Zheng, Y.F., Mater. Sci. Eng., 2010, pp. 1204–1210.Google Scholar
  10. 10.
    Marandi, G.B, Rouzbahani, G.B, and Kudrabar, M., J. Appl. Chem. Res., 2014, pp. 63–80.Google Scholar
  11. 11.
    Akhgari, A. and Rotubati, M.H., Nanomed. J., 2016, vol. 3, no. 1, pp. 43–48.Google Scholar
  12. 12.
    Kia, C.S., Baeka, D., Ganga, K.D., Leea, K.H., Polym., 2005, vol. 46, pp. 5094–5102.CrossRefGoogle Scholar
  13. 13.
    Nuge, T., Hoque, M., Yeow, T., Nordin, N., and Chowdhury, M., Regenerative Res., 2013, vol. 2, no. 2, pp. 39–42.Google Scholar
  14. 14.
    El-Newehy, M., Al-Deyab, S., Kenawy, K., and Abdel-Megeed, A., J. Nanomaterials, 2011, pp. 1–8.Google Scholar
  15. 15.
    Noorpoor, A.R., Sadighzadeh, A., and Anvari, A., Int. J. Environ.Res., 2014, vol. 8, no. 2, pp. 421–426.Google Scholar
  16. 16.
    Malakhov, S.N., Bakirov, A.V., Dmitryakov, P.V., and Chvalun, S.N., Russ. J. Appl. Chem., 2016, vol. 89, no. 1, pp.165–172.CrossRefGoogle Scholar
  17. 17.
    Li, Z. and Wang, C., One-dimensional Nanostructure, Electrospinning Technique and Unique Nanofibers, New York: Springer, 2013, pp. 15–28.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Yadegar-e-Imam Khomeini (RAH) Shahr-e-ReyIslamic Azad UniversityTehranIran

Personalised recommendations