Russian Journal of Applied Chemistry

, Volume 90, Issue 10, pp 1627–1633 | Cite as

Comparative Study of the Support Role on the Activity of Copper Species for Nitric Oxide Reduction

Various Technological Processes

Abstract

In this work three different supports (γ-Al2O3, ZSM-5, and SAPO-34) of varying degree of acid sites and textural properties were used to evaluate the influence of support specifics in the Cu/supported nanocatalysts on NO conversion. The nanocatalysts were prepared by homogeneous deposition precipitation (HDP) method and characterized by N2 pore size distribution, TEM, H2-TPR for investigation the reducibility of the copper species and acidity measurement by NH3 adsorption. The Cu/ZSM-5 and Cu/SAPO-34 catalysts were more active for NO conversion than Cu/γ-Al2O3 catalyst. The characterization and conversion differences in the copper supported on different types of support indicated that these differences arise from the differences in surface area, pore size distribution, and acidity of the supports. The higher SCR-DeNO activity of Cu/ZSM-5 and Cu/SAPO-34 nano-catalysts can be explained by higher surface area and acidity of ZSM-5 and SAPO-34 supports. These catalysts also have larger amount of reducible Cu species compared to Cu/γ-Al2O3 which correlates with the structure of the support used. Considering these findings, the NO conversion ability of Cu/supported catalysts has been correlated with support structure and acidity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Worch, D., Suprun, W., and Gläser, R., Catal. Today, 2011, vol. 176, no. 1, pp. 309–313.CrossRefGoogle Scholar
  2. 2.
    Hussain, M., Russo, N., and Saracco, G., Ind. Eng. Chem. Res, 2011, vol. 51, no. 22, pp. 7467–7474.CrossRefGoogle Scholar
  3. 3.
    Kotsifa, A., Kondarides, D.I., and Verykios, X.E., Appl. Catal., B, 2008, vol. 80, no. 3, pp. 260–270.CrossRefGoogle Scholar
  4. 4.
    Forzatti, P., Appl. Catal., A, 2001, vol. 222, no. 1, pp. 221–236.CrossRefGoogle Scholar
  5. 5.
    Li. J., Chang, H., Ma, L., Hao, J., and Yang, R.T., Catal. today, 2011, vol. 175, no. 1, pp. 147–156.CrossRefGoogle Scholar
  6. 6.
    Amanpour, J., Salari, D., Niaei, A., Mousavi, S.M., and Panahi, P. N., J. Environ. Sci. Health. Part A, 2013, vol. 48, no. 8, pp. 879–886.CrossRefGoogle Scholar
  7. 7.
    Nakhostin Panahi, P., Salari, D., Niaei, A., and Mousavi, S.M., J. Ind. Eng. Chem, 2013, vol. 19, no. 6, pp. 1793–1799.CrossRefGoogle Scholar
  8. 8.
    Nakhostin Panahi, P., Salari, D., Niaei, A., and Mousavi, S.M., Chin. J. Chem. Eng. 2015, vol. 23, pp. 1647–1654.CrossRefGoogle Scholar
  9. 9.
    Sultana, A., Nanba, T., Haneda, M., and Hamada, H., Catal. Commun., 2009, vol. 10, no. 14, pp. 1859–1863.CrossRefGoogle Scholar
  10. 10.
    Centi, G. and Perathoner, S., Appl. Catal., A, 1995, vol. 132, no. 2, pp. 179–259.CrossRefGoogle Scholar
  11. 11.
    Pereda-Ayo, B., De, La., Torre, U., Illán-Gómez, M.J., Bueno-López, A., and González-Velasco, J.R., Appl. Catal., B, 2014, vol. 147, pp. 420–428.CrossRefGoogle Scholar
  12. 12.
    Fierro, G., Moretti, G., Ferraris, G., and Andreozzi, G.B., Appl. Catal., B, 2011, vol. 102, no. 1–2, pp. 215–223.CrossRefGoogle Scholar
  13. 13.
    Sultana, A., Haneda, M., Fujitani, T., and Hamada, H., Catal. Lett., 2007, vol. 114, no. 1–2, pp. 96–102.CrossRefGoogle Scholar
  14. 14.
    Zhang, F., Zhang, S., Guan, N., Schreier, E., Richter, M., Eckelt, R., and Fricke, R., Appl. Catal., B, 2007, vol. 73, no. 3, pp. 209–219.CrossRefGoogle Scholar
  15. 15.
    Sultana, A., Nanba, T., Sasaki, M., Haneda, M., Suzuki, K., and Hamada, H., Catal. Today, 2011, vol. 164, no. 1, pp. 495–499.CrossRefGoogle Scholar
  16. 16.
    Wijayanti, K., Andonova, S., Kumar, A., Li, J., Kamasamudram, K., Currier, N. W., Yezerets, A., and Olsson, L., Appl. Catal., B, 2015, vol. 166–167, pp. 568–579.CrossRefGoogle Scholar
  17. 17.
    Praliaud, H., Mikhailenko, S., Chajar, Z., and Primet, M., Appl. Catal., B, 1998, vol. 16, no. 4, pp. 359–374.CrossRefGoogle Scholar
  18. 18.
    Nanba, T., Masukawa, S., Ogata, A., Uchisawa, J., and Obuchi, A., Appl. Catal., B, 2005, vol. 61, no. 3, pp. 288–296.CrossRefGoogle Scholar
  19. 19.
    Wang, J., Yu, T., Wang, X., Qi, G., Xue, J., Shen, M., and Li, W., Appl. Catal., B, 2012, vol. 127, pp. 137–147.CrossRefGoogle Scholar
  20. 20.
    Xue, J., Wang, X., Qi, G., Wang, J., Shen, M., and Li, W., J. Catal., 2013, vol. 297, pp. 56–64.CrossRefGoogle Scholar
  21. 21.
    Liu, X., Wu, X., Weng, D., and Si, Z., Catal. Commun., 2015, vol. 59, pp. 35–39.CrossRefGoogle Scholar
  22. 22.
    Kieger, S., Delahay, G., Coq, B., and Neveu, B., J. Catal., 1999, vol. 183, no. 2, pp. 267–280.CrossRefGoogle Scholar
  23. 23.
    Sultana, A., Sasaki, M., and Hamada, H., Catal. Today, 2012, vol. 185, no. 1, pp. 284–289.CrossRefGoogle Scholar
  24. 24.
    Suprun, W., Schaedlich, K., and Papp, H., Chem. Eng. Technol., 2005, vol. 28, no. 2, pp. 199–203.CrossRefGoogle Scholar
  25. 25.
    Yang, S., Wang, C., Li, J., Yan, N., Ma, L., and Chang, H., Appl. Catal., B, 2011, vol. 110, pp. 71–80.CrossRefGoogle Scholar
  26. 26.
    Putluru, S.S.R., Schill, L., Jensen, A.D., Siret, B., Tabaries, F., and Fehrmann, R., Appl. Catal., B, 2015, vol. 165, pp. 628–635.CrossRefGoogle Scholar
  27. 27.
    Lietti, L., Ramis, G., Berti, F., Toledo, G., Robba, D., Busca, G., and Forzatti, P., Catal. Today, 1998, vol. 42, no. 1, pp. 101–116.CrossRefGoogle Scholar
  28. 28.
    Chuang, K.H., Liu, Z.S., Chang, Y.H., Lu, C.Y., and Wey, M.Y., Reac. Kinet. Mech. Cat., 2010, vol. 99, no. 2, pp. 409–420.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceUniversity of ZanjanZanjanIran
  2. 2.Charles Gerhardt Institute, UMR 5253 CNRS/UM2/ENSCM/UM1, Advanced Materials for Catalysis and Health GroupHigher National School of Chemistry of MontpellierMontpellierFrance

Personalised recommendations