Advertisement

Russian Journal of Applied Chemistry

, Volume 89, Issue 9, pp 1447–1453 | Cite as

Thermal degradation of epoxy composites based on thermally expanded graphite and multiwalled carbon nanotubes

  • I. S. Berdyugina
  • Yu. P. Steksova
  • A. A. Shibaev
  • E. A. Maksimovskii
  • A. G. Bannov
Macromolecular Compounds and Polymeric Materials

Abstract

Thermal degradation of epoxy composites filled with various carbon materials (thermally expanded graphite, multiwalled carbon nanotubes) was studied. The dynamics of the thermal degradation of epoxy composites was evaluated by thermogravimetric analysis in the temperature range of 55–700°С (heating rate 10 deg min–1) in an oxidizing medium. Carbon fillers were studied by scanning electron microscopy, transmission electron microscopy, and low-temperature nitrogen adsorption. The influence of the composite preparation procedure on its thermal stability was determined. The type of filler significantly influences the thermal oxidative degradation of the composites.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kotsilkova, R., Ivanov, E., Bychanok, D., et al., Compos. Sci. Technol., 2015, vol. 106, pp. 85–92.CrossRefGoogle Scholar
  2. 2.
    Kumar, S., Lively, B., Sun, L.L., et al., Carbon, 2010, vol. 48, pp. 3846–3857.CrossRefGoogle Scholar
  3. 3.
    Amel’kovich, Yu.A., Nazarenko, O.B., and Mel’nikova, T.V., Kontr. Diagn., 2014, no. 3, pp. 46–49.Google Scholar
  4. 4.
    Visakh, P.M., Nazarenko, O.B., Amelkovich, Yu.A., and Melnikov, T.V., IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 81, pp. 1–6.CrossRefGoogle Scholar
  5. 5.
    Nazarenko, O.B., Melnikova, T.V., and Visakh, P.M., J. Phys.: Conf. Ser., 2016, vol. 671, pp. 1–6.Google Scholar
  6. 6.
    Visakh, P.M., Nazarenko, O.B., Amelkovich, Yu.A., and Melnikova, T.V., Polym. Adv. Technol., 2016, pp. 1–4.Google Scholar
  7. 7.
    Dehghan, M., Al-Mahaidi, R., and Sbarski, I., Soc. Plastics Eng., 2014, vol. 37, no. 4, pp. 1–13.Google Scholar
  8. 8.
    Liu, Y., Zhao, J., Zhao, L., et al., ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 1, pp. 311–320.CrossRefGoogle Scholar
  9. 9.
    Bannov, A.G., Yusin, S.I., Timofeeva, A.A., et al., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 4, pp. 645–652.CrossRefGoogle Scholar
  10. 10.
    Choi, Y.-K., Sugimoto, K., Song, S.-M., et al., Carbon, 2005, vol. 43, pp. 2199–2208.CrossRefGoogle Scholar
  11. 11.
    Park, J.-M., Kim, D.-S., Kim, S.-J., et al., Composites: Part B, 2007, vol. 38, pp. 847–861.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • I. S. Berdyugina
    • 1
  • Yu. P. Steksova
    • 1
  • A. A. Shibaev
    • 1
  • E. A. Maksimovskii
    • 2
    • 3
  • A. G. Bannov
    • 1
  1. 1.Novosibirsk State Technical UniversityNovosibirskRussia
  2. 2.Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations