Skip to main content
Log in

Optimization of ilmenite flotation process in the presence of microwave irradiation

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

In the present study, the effect of parameters, including microwave irradiation power, pH, dosage of chemical reagents (collector, depressant and activator) were studied by microflotation (in Hallimond tube) process. The mechanical flotation tests were carried out on optimum parameters obtained from microflotation tests. The software based on experimental design method (DX7) with the two-level full factorial design was applied to determine the parameter effects and to optimize the microflotation recovery. The optimum conditions were determined by analysis of variance (ANOVA), indicating that the irradiation power was the most effective parameter. The optimum values of parameters in the microflotation process are as follows: power of microwave (1000 W), pH (6.3), dosage of chemical reagents (sodium oleate 3.65 × 10-4 M as a collector, acidified sodium silicate 2 g L–1 as a depressant, and lead(II) nitrate 2.1 × 10–5 M as an activator). By applying these optimized parameters, a product with ilmenite recovery of 83.26% was predicted by the software. The results of microflotation tests indicated that an ilmenite recovery of 82.35% was achieved being very close to the predicted value. The results of mechanical flotation based on optimized condition showed that the recovery and separation efficiency of irradiated ilmenite were improved up to 86.03% and 48.61%, respectively, indicating the positive effect of irradiation on ilmenite floatability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Song, Q. and Tsai, S.C., Int. J. Miner Process., 1989, vol. 26, pp. 111–121.

    Article  CAS  Google Scholar 

  2. Deer, W.A., Howie, R.A., and Zussman, J., An Introduction to the Rock-Forming Minerals, Longman Scientific & Technical, New York. 1991.

    Google Scholar 

  3. Didenko, P.I. and Efremov, A.A., Appl. Sur. Sci., 2004, vol. 231, pp. 903–906.

    Article  Google Scholar 

  4. Pownceby, M.I., Sparrow, G.J, and Fisher-White, M.J., Miner. Eng., 2008, vol. 21, pp. 587–597.

    Article  CAS  Google Scholar 

  5. Fan, X. and Rowson, N.A., Developments in Chem. Eng. & Miner. Process., 2000, vol. 8, pp. 167–182.

    Article  Google Scholar 

  6. Cooper, T.G. and De Leeuw, N.H.., Langmuir, 2004, vol. 20, pp. 3984–3994.

    Article  CAS  Google Scholar 

  7. Moolman, D.W, Aldrich, C., and Van Deventer, J.S.J., Chem. Eng. Sci., 1995, vol. 50, p. 3501.

    Article  CAS  Google Scholar 

  8. Cabezon, L.M, Caballero, M, and Perez-Bustamante, J.A., Sep. Sci. Technol., 1994, vol. 29, pp. 1491–1500.

    Article  CAS  Google Scholar 

  9. Lazaridis, N.K, Matis, K.A, Stalidis, G.A, and Mavros, P., Sep. Sci. Technol., 1992, vol. 27, pp. 1743–1758.

    Article  CAS  Google Scholar 

  10. Kukharev, B.F., Stankevich, V.K., and Klimenko, G.R., Russ. J. Appl. Chem., 2007, vol. 80, no. 3, pp. 504–505.

    Article  CAS  Google Scholar 

  11. Shulyak, I.V. and Grushova, E.I., Russ. J. Appl. Chem., 2013, vol. 86, no. 2, pp. 206–213.

    Article  CAS  Google Scholar 

  12. Bulatovic, S.M., Handbook of Flotation Reagents, Elsevier Science & Technology Books, 2007.

    Google Scholar 

  13. Fan, X. and Rowson, N.A., Mineral Eng., 2000, vol. 1, pp. 205–215.

    Article  Google Scholar 

  14. Fan, X., Waters, K.E., Rowson, N.A., and Parker, D.J., J. Colloid Interface Sci., 2009, vol. 329, pp. 167–172.

    Article  CAS  Google Scholar 

  15. Zhu, Y.G., Zhang, G.F., and Feng, Q.M., Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 1149–1154.

    Article  CAS  Google Scholar 

  16. Liimatainen, V. and Techn, L., Trans. Znst. Min. Metall. (Sect. C. Mineral Process.), 1977, vol. 4C, pp. 160–161.

    Google Scholar 

  17. Runolinna, U. and Rinne, R., Int. Miner. Process. Cong., 1960, pp. 447–475.

    Google Scholar 

  18. Gutierrez, C., Int. J. Miner. Process., 1976, vol. 3, pp. 247–256.

    Article  CAS  Google Scholar 

  19. Fan, X. and Rowson, N.A., Canadian Metallurgical Quarterly, 2002, vol. 41, 133–142.

    Article  CAS  Google Scholar 

  20. Fan, X., Kelly, R.M., and Rowson, N.A., Canadian Metallurgical Quarterly, 2000, vol. 39, pp. 247–254.

    Article  CAS  Google Scholar 

  21. Bulatovic, S. and Wyslouzi, D.M., Miner. Eng., 1999, vol. 12, pp. 1407–1417.

    Article  CAS  Google Scholar 

  22. Behera, R.C., and Mohanty, A.K., Int. J. Miner. Process., 1986, vol. 17, pp. 131–142.

    Article  CAS  Google Scholar 

  23. Zhong, K. and Cui, L., Int. J. Miner. Process., 1987, vol. 20, pp. 253–265.

    Article  CAS  Google Scholar 

  24. Khrustalev, D.P, Suleymenova, A.A, and Fazylov, S.D., Russ. J. Appl. Chem., 2007, vol. 81, vol. 5, p. 863.

    Google Scholar 

  25. Petrova, N.V., Evtushenko, A.M., Chikhacheva, I.P., Zubov, V.P., and Kubrakova, I. V., Russ. J. Appl. Chem., 2005, vol. 78, no. 7, pp. 1158–1161.

    Article  CAS  Google Scholar 

  26. Rakhmankulov, D.L., Shavshukova, S.Yu., Latypova, F.N., and Zorin, V.V., Russ. J. Appl. Chem., 2002, vol. 75, no. 9, pp. 1377–1383.

    Article  CAS  Google Scholar 

  27. Irannajad, M., Mehdilo, A., and Salmani Nuri, O., Separ. & Pur. Tech., 2014, vol. 132, pp. 401–412.

    Article  CAS  Google Scholar 

  28. Salmani Nuri, O., Mehdilo, A., and Irannajad, M., Appl. Sur. Sci., 2014, vol. 311, pp. 27–32.

    Article  Google Scholar 

  29. Haaland, D.P., Experimental Design in Biotechnology, Marcel Dekker Inc, New York, 1989.

    Google Scholar 

  30. Montgomery, D.C., Design and Analysis of Experiments, 3th ed., New York: John Wiley & Sons, 1991.

    Google Scholar 

  31. Mannan, S., Razi, F.A., and Alam, Z.M., Env. Sci., 2007, vol. 19, p. 23.

    Article  CAS  Google Scholar 

  32. Ragonese, R., Mulholland, M., and Kalman, J., J. Chromatography, A, 2000, vol. 870, pp. 45–51.

    Article  CAS  Google Scholar 

  33. Massumi, A., Najafi, N.M,. and Barzegari, H., Microchem. J., 2002, vol. 72, pp. 93–101.

    Article  CAS  Google Scholar 

  34. Anderson, M.J. and Whitcomb, P.J., DOE Simplified: Practical Tools for Effective Experimentation, Quality and Reliability Engineering International, Inc. Portland, Oregon, 2000.

    Google Scholar 

  35. Wang, D. and Hu, Y.H., Solution Chemistry of Flotation, Human Science and Technology Press, 1988.

    Google Scholar 

  36. Zhang, J., Wang, W., Liu, J., Huang, Y., Feng, Q., and Zhao, H., Minerals Engineering, 2014, vol. 61, pp. 16–22.

    Article  CAS  Google Scholar 

  37. Richard, A.P., Walter, J., and Weber, J., Inorg. Nucl. Chem., 1970, vol. 33, pp. 2443–2449.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Irannajad.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuri, O.S., Irannajad, M. Optimization of ilmenite flotation process in the presence of microwave irradiation. Russ J Appl Chem 89, 1328–1335 (2016). https://doi.org/10.1134/S1070427216080188

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427216080188

Navigation