Russian Journal of Applied Chemistry

, Volume 89, Issue 8, pp 1328–1335 | Cite as

Optimization of ilmenite flotation process in the presence of microwave irradiation

Various Technological Processes
  • 27 Downloads

Abstract

In the present study, the effect of parameters, including microwave irradiation power, pH, dosage of chemical reagents (collector, depressant and activator) were studied by microflotation (in Hallimond tube) process. The mechanical flotation tests were carried out on optimum parameters obtained from microflotation tests. The software based on experimental design method (DX7) with the two-level full factorial design was applied to determine the parameter effects and to optimize the microflotation recovery. The optimum conditions were determined by analysis of variance (ANOVA), indicating that the irradiation power was the most effective parameter. The optimum values of parameters in the microflotation process are as follows: power of microwave (1000 W), pH (6.3), dosage of chemical reagents (sodium oleate 3.65 × 10-4 M as a collector, acidified sodium silicate 2 g L–1 as a depressant, and lead(II) nitrate 2.1 × 10–5 M as an activator). By applying these optimized parameters, a product with ilmenite recovery of 83.26% was predicted by the software. The results of microflotation tests indicated that an ilmenite recovery of 82.35% was achieved being very close to the predicted value. The results of mechanical flotation based on optimized condition showed that the recovery and separation efficiency of irradiated ilmenite were improved up to 86.03% and 48.61%, respectively, indicating the positive effect of irradiation on ilmenite floatability.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Song, Q. and Tsai, S.C., Int. J. Miner Process., 1989, vol. 26, pp. 111–121.CrossRefGoogle Scholar
  2. 2.
    Deer, W.A., Howie, R.A., and Zussman, J., An Introduction to the Rock-Forming Minerals, Longman Scientific & Technical, New York. 1991.Google Scholar
  3. 3.
    Didenko, P.I. and Efremov, A.A., Appl. Sur. Sci., 2004, vol. 231, pp. 903–906.CrossRefGoogle Scholar
  4. 4.
    Pownceby, M.I., Sparrow, G.J, and Fisher-White, M.J., Miner. Eng., 2008, vol. 21, pp. 587–597.CrossRefGoogle Scholar
  5. 5.
    Fan, X. and Rowson, N.A., Developments in Chem. Eng. & Miner. Process., 2000, vol. 8, pp. 167–182.CrossRefGoogle Scholar
  6. 6.
    Cooper, T.G. and De Leeuw, N.H.., Langmuir, 2004, vol. 20, pp. 3984–3994.CrossRefGoogle Scholar
  7. 7.
    Moolman, D.W, Aldrich, C., and Van Deventer, J.S.J., Chem. Eng. Sci., 1995, vol. 50, p. 3501.CrossRefGoogle Scholar
  8. 8.
    Cabezon, L.M, Caballero, M, and Perez-Bustamante, J.A., Sep. Sci. Technol., 1994, vol. 29, pp. 1491–1500.CrossRefGoogle Scholar
  9. 9.
    Lazaridis, N.K, Matis, K.A, Stalidis, G.A, and Mavros, P., Sep. Sci. Technol., 1992, vol. 27, pp. 1743–1758.CrossRefGoogle Scholar
  10. 10.
    Kukharev, B.F., Stankevich, V.K., and Klimenko, G.R., Russ. J. Appl. Chem., 2007, vol. 80, no. 3, pp. 504–505.CrossRefGoogle Scholar
  11. 11.
    Shulyak, I.V. and Grushova, E.I., Russ. J. Appl. Chem., 2013, vol. 86, no. 2, pp. 206–213.CrossRefGoogle Scholar
  12. 12.
    Bulatovic, S.M., Handbook of Flotation Reagents, Elsevier Science & Technology Books, 2007.Google Scholar
  13. 13.
    Fan, X. and Rowson, N.A., Mineral Eng., 2000, vol. 1, pp. 205–215.CrossRefGoogle Scholar
  14. 14.
    Fan, X., Waters, K.E., Rowson, N.A., and Parker, D.J., J. Colloid Interface Sci., 2009, vol. 329, pp. 167–172.CrossRefGoogle Scholar
  15. 15.
    Zhu, Y.G., Zhang, G.F., and Feng, Q.M., Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 1149–1154.CrossRefGoogle Scholar
  16. 16.
    Liimatainen, V. and Techn, L., Trans. Znst. Min. Metall. (Sect. C. Mineral Process.), 1977, vol. 4C, pp. 160–161.Google Scholar
  17. 17.
    Runolinna, U. and Rinne, R., Int. Miner. Process. Cong., 1960, pp. 447–475.Google Scholar
  18. 18.
    Gutierrez, C., Int. J. Miner. Process., 1976, vol. 3, pp. 247–256.CrossRefGoogle Scholar
  19. 19.
    Fan, X. and Rowson, N.A., Canadian Metallurgical Quarterly, 2002, vol. 41, 133–142.CrossRefGoogle Scholar
  20. 20.
    Fan, X., Kelly, R.M., and Rowson, N.A., Canadian Metallurgical Quarterly, 2000, vol. 39, pp. 247–254.CrossRefGoogle Scholar
  21. 21.
    Bulatovic, S. and Wyslouzi, D.M., Miner. Eng., 1999, vol. 12, pp. 1407–1417.CrossRefGoogle Scholar
  22. 22.
    Behera, R.C., and Mohanty, A.K., Int. J. Miner. Process., 1986, vol. 17, pp. 131–142.CrossRefGoogle Scholar
  23. 23.
    Zhong, K. and Cui, L., Int. J. Miner. Process., 1987, vol. 20, pp. 253–265.CrossRefGoogle Scholar
  24. 24.
    Khrustalev, D.P, Suleymenova, A.A, and Fazylov, S.D., Russ. J. Appl. Chem., 2007, vol. 81, vol. 5, p. 863.Google Scholar
  25. 25.
    Petrova, N.V., Evtushenko, A.M., Chikhacheva, I.P., Zubov, V.P., and Kubrakova, I. V., Russ. J. Appl. Chem., 2005, vol. 78, no. 7, pp. 1158–1161.CrossRefGoogle Scholar
  26. 26.
    Rakhmankulov, D.L., Shavshukova, S.Yu., Latypova, F.N., and Zorin, V.V., Russ. J. Appl. Chem., 2002, vol. 75, no. 9, pp. 1377–1383.CrossRefGoogle Scholar
  27. 27.
    Irannajad, M., Mehdilo, A., and Salmani Nuri, O., Separ. & Pur. Tech., 2014, vol. 132, pp. 401–412.CrossRefGoogle Scholar
  28. 28.
    Salmani Nuri, O., Mehdilo, A., and Irannajad, M., Appl. Sur. Sci., 2014, vol. 311, pp. 27–32.CrossRefGoogle Scholar
  29. 29.
    Haaland, D.P., Experimental Design in Biotechnology, Marcel Dekker Inc, New York, 1989.Google Scholar
  30. 30.
    Montgomery, D.C., Design and Analysis of Experiments, 3th ed., New York: John Wiley & Sons, 1991.Google Scholar
  31. 31.
    Mannan, S., Razi, F.A., and Alam, Z.M., Env. Sci., 2007, vol. 19, p. 23.CrossRefGoogle Scholar
  32. 32.
    Ragonese, R., Mulholland, M., and Kalman, J., J. Chromatography, A, 2000, vol. 870, pp. 45–51.CrossRefGoogle Scholar
  33. 33.
    Massumi, A., Najafi, N.M,. and Barzegari, H., Microchem. J., 2002, vol. 72, pp. 93–101.CrossRefGoogle Scholar
  34. 34.
    Anderson, M.J. and Whitcomb, P.J., DOE Simplified: Practical Tools for Effective Experimentation, Quality and Reliability Engineering International, Inc. Portland, Oregon, 2000.Google Scholar
  35. 35.
    Wang, D. and Hu, Y.H., Solution Chemistry of Flotation, Human Science and Technology Press, 1988.Google Scholar
  36. 36.
    Zhang, J., Wang, W., Liu, J., Huang, Y., Feng, Q., and Zhao, H., Minerals Engineering, 2014, vol. 61, pp. 16–22.CrossRefGoogle Scholar
  37. 37.
    Richard, A.P., Walter, J., and Weber, J., Inorg. Nucl. Chem., 1970, vol. 33, pp. 2443–2449.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Department of Mining and Metallurgical EngAmirkabir University of TechnologyTehranIran

Personalised recommendations