Advertisement

Russian Journal of Applied Chemistry

, Volume 89, Issue 8, pp 1302–1308 | Cite as

Influence of the properties of modified dextran hydrogel polymer network on the kinetics of the release of prospidin antitumor agent

  • S. O. Solomevich
  • P. M. Bychkovskii
  • T. L. Yurkshtovich
  • N. V. Golub
Macromolecular Compounds and Polymeric Materials
  • 35 Downloads

Abstract

The influence exerted by the conditions of the synthesis of dextran phosphate hydrogels in the orthophosphoric acid–urea system on their functional composition and swellability in water was studied. The main parameters of the polymer network, namely, the mean molecular mass of segments between cross-linking points, the pore size, and the cross-linking density, were determined. Samples of prospidin immobilized on dextran phosphate hydrogels were prepared, and the kinetics of the cytostatic release into phosphate buffer solution (pH 7.4) was studied in relation to the functional composition and parameters of the polymer network of the support. The prospidin release from dextran phosphate hydrogels is due both to diffusion processes and to breakdown of the polymer network of the hydrogel.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Encyclopedia of Controlled Drug Delivery, Mathiowitz, E., Ed., New York: Wiley, 1999, vol.1.Google Scholar
  2. 2.
    Peppas, N.A., Bures, P., Leobandung, W., and Ichikawa, H., Eur. J. Pharm. Biopharm., 2000, vol. 50, no. 1, pp. 27–46.CrossRefGoogle Scholar
  3. 3.
    Van Dijk-Wolthuis, W.N.F., Macromolecules, 1995, vol. 28, pp. 6317–6322.CrossRefGoogle Scholar
  4. 4.
    Maia, J., Polymer, 2005, vol. 446, pp. 9604–9614.CrossRefGoogle Scholar
  5. 5.
    De Smet, L., Ceelen, W., Remon, J.P., and Vervaet, C., Sci. World J., 2013, paper 720858, pp. 1–21.Google Scholar
  6. 6.
    Yurkshtovich, T.L., Solomevich, S.O., Golub, N.V., et al., Colloid J., 2014, vol. 76, no. 5, pp. 628–636.CrossRefGoogle Scholar
  7. 7.
    Bychkovski, P.M., Yurkshtovich, T.L., Golub, N.V., et al., Pharm. Chem. J., 2013, vol. 47, no. 7, pp. 387–392.CrossRefGoogle Scholar
  8. 8.
    Corbridge, D.E.C., Phosphorus: Chemistry, Biochemistry, and Technology, Boca Raton: CRC, 2013.CrossRefGoogle Scholar
  9. 9.
    Geller, B.E., Geller, A.A., and Chirtulov, V.G., Prakticheskoe rukovodstvo po fizikokhimii voloknoobrazuyushchikh polimerov (Practical Guide on Physical Chemistry of Fiber-Forming Polymers), Moscow: Khimiya, 1996.Google Scholar
  10. 10.
    Peppas, N.A. and Merrill, E.W., J. Polym. Sci. Polym. Chem., 1976, vol. 14, pp. 441–457.CrossRefGoogle Scholar
  11. 11.
    Jong, S.J., van Eerdenbrugh, B., van Nostrum, C.F., et al., J. Control. Release, 2001, vol. 71, pp. 261–275.CrossRefGoogle Scholar
  12. 12.
    Ferreira, L., Gil, M.H., and Dordick, J.S., Biomaterials, 2002, vol. 23, pp. 3957–3967.CrossRefGoogle Scholar
  13. 13.
    Peppas, N.A., Hydrogels in Medicine and Pharmacy, Boca Raton: CRC, 1986, vol.1.Google Scholar
  14. 14.
    Yurkshtovich, T.L., Golub, N.V., Yurkshtovich, N.K., et sal., Russ. J. Appl. Chem., 2012, vol. 85, no. 11, pp. 1771–1779.CrossRefGoogle Scholar
  15. 15.
    Elyashevich, G.K., Bel’nikevich, N.G., Vesnebolotskaya, S.A., Polym. Sci., Ser. A, 2009, vol. 51, pp. 550–553.CrossRefGoogle Scholar
  16. 16.
    Samchenko, Yu.M. and Ul’berg, Z.R., Kolloidn. Zh., 1996, vol. 58, no. 2, pp. 240–243.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • S. O. Solomevich
    • 1
  • P. M. Bychkovskii
    • 1
  • T. L. Yurkshtovich
    • 1
  • N. V. Golub
    • 1
  1. 1.Research Institute of Physicochemical ProblemsBelarussian State UniversityMinskBelarus

Personalised recommendations