Advertisement

Russian Journal of Applied Chemistry

, Volume 89, Issue 7, pp 1089–1096 | Cite as

Tolerant cathode catalysts for direct methanol fuel cell

  • O. V. Korchagin
  • V. N. Andreev
  • A. Yu. Aleksandrovskaya
  • V. A. Bogdanovskaya
  • M. R. Tarasevich
Applied Electrochemistry and Metal Corrosion Protection
  • 29 Downloads

Abstract

Effect of methanol on the reduction kinetics of oxygen on highly dispersed catalysts 60Pt/C (HiSPEC 9100), 40Pt/carbon nanotubes, and CoFe/carbon nanotubes for the cathode of a direct methanol-oxygen fuel cell was studied. It was shown that the CoFe/carbon nanotubes catalyst surpasses the platinum systems in tolerance to the alcohol. It was found that the tolerance of the cathode catalyst strongly affects the current–voltage characteristics of the fuel cell, which is the principal result of the study and constitutes its scientific novelty. The maximum power density of an alkaline methanol-oxygen fuel cell with nonplatinum cathode (260 mW cm–2) exceeds the characteristics of similar fuel cells with platinum cathode catalysts, both obtained in the present study and described in the literature, which points to the practical importance of the study.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Direct Methanol Fuel Cell Market–-Global Industry Size, Share, Trends, Analysis, and Forecasts 2012–2018.Google Scholar
  2. 2.
    Zhiani, M., Gasteiger, H.A., Piana, M., and Catanorchi, S., Int. J. Hydrogen Energy, 2011, vol. 36, no. 8, pp. 5110–5116.CrossRefGoogle Scholar
  3. 3.
    Tripathi, B.P., Kumar, M., and Shahi, V.K., J. Membr. Sci., 2009, vol. 327, no. 1, pp. 145–154.CrossRefGoogle Scholar
  4. 4.
    Tsivadze, A.Yu., Tarasevich, M.R., Kuzov, A.V., et al., Doklady Phys. Chem., 2008, vol. 421, no. 1, pp. 166–169.CrossRefGoogle Scholar
  5. 5.
    Zheng, F.-S., Liu, S.-H., and Kuo, C.-W., Int. J. Hydrogen Energy, 2016, vol. 41, no. 4, pp. 2487–2497.CrossRefGoogle Scholar
  6. 6.
    Kanninen, P., Borghei, M., Sorsa, O., et al., Appl. Catal., B, 2014, vols. 156–157, pp. 341–349.CrossRefGoogle Scholar
  7. 7.
    Sahoo, M., Scott, K., and Ramaprabhu, S., Int. J. Hydrogen Energy, 2015, vol. 40, no. 30, pp. 9435–9443.CrossRefGoogle Scholar
  8. 8.
    Tarasevich, M.R. and Davydova, E.S., Russ. J. Electrochem., 2016, vol. 52, no. 3, pp. 193–219.CrossRefGoogle Scholar
  9. 9.
    Tarasevich, M.R., Mazin, P.V., and Kapustina, N.A., Russ. J. Electrochem., 2012, vol. 52, no. 11, pp. 1113–1122.CrossRefGoogle Scholar
  10. 10.
    Tarasevich, M.R., Mazin, P.V., and Kapustina, N.A., Russ. J. Electrochem., 2011, vol. 47, no. 8, pp. 923–932.CrossRefGoogle Scholar
  11. 11.
    Bogdanovskaya, V.A., Tarasevich, M.R., and Lozovaya, O.V., Russ. J. Electrochem., 2011, vol. 47, no. 7, pp. 846–860.CrossRefGoogle Scholar
  12. 12.
    Tarasevich, M.R., Bogdanovskaya, V.A., and Mazin, P.V., Russ. J. Electrochem., 2010, vol. 46, no. 5, pp. 846–860.CrossRefGoogle Scholar
  13. 13.
    Korchagin, O.V., Bogdanovskaya, V.A., Tarasevich, M.R., et al., Katal. Prom–sti, 2016, vol. 16, no. 2, pp. 48–56.Google Scholar
  14. 14.
    Avakov, V.B., Aliev, A.D., Bogdanovskaya, V.A., et al., Russ. J. Phys. Chem., A, 2015, vol. 89, no. 5, pp. 887–893.CrossRefGoogle Scholar
  15. 15.
    Bogdanovskaya, V.A., Krasil’nikova, O.K., Kuzov, A.V., et al., Russ. J. Electrochem., 2015, vol. 51, no. 7, pp. 602–614.CrossRefGoogle Scholar
  16. 16.
    Soboleva, T., Zhao, X., Malek, K., et al., Appl. Mater. Interfaces, 2010, vol. 2, no. 2, pp. 375–384.CrossRefGoogle Scholar
  17. 17.
    Soboleva, T., Malek, K., Xie, Z., et al., Appl Mater. Interfaces, 2011, vol. 3, no. 6, pp. 1827–1837.CrossRefGoogle Scholar
  18. 18.
    Fukuta, K., Electrolyte Materials for AMFCs and AMFC Perfomance, Tokuyama Corp., May 8, 2011.Google Scholar
  19. 19.
    Yang, D., Yu, H., Li, G., et al., Chin. J. Catal., 2014, vol. 35, no. 7, pp. 1091–1097.CrossRefGoogle Scholar
  20. 20.
    Prakash, G.K.S., Krause, F.C., Viva, F.A., et al., J. Power Sources, 2011, vol. 196, no. 19, pp. 7967–7972.CrossRefGoogle Scholar
  21. 21.
    Tarasevich, M.R., Korchagin, O.V., and Kuzov, A.V., Russ. Chem. Rev., 2013, vol. 82, no. 11, pp. 1047–1065.CrossRefGoogle Scholar
  22. 22.
    Antolini, E. and Gonzalez, E.R., J. Power Sources, 2010, vol. 195, no. 11, pp. 3431–3450.CrossRefGoogle Scholar
  23. 23.
    Yu, E.H., Krewer, U., and Scott, K., Energies, 2010, vol. 3, no. 8, pp. 1499–1528.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • O. V. Korchagin
    • 1
  • V. N. Andreev
    • 1
  • A. Yu. Aleksandrovskaya
    • 1
  • V. A. Bogdanovskaya
    • 1
  • M. R. Tarasevich
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations