Advertisement

Russian Journal of Applied Chemistry

, Volume 89, Issue 6, pp 1009–1018 | Cite as

Preparation and characterization of microcapsulated red phosphorus and its multi-step thermal oxidation processes based on kinetic approach

  • Jie Liu
  • Dongming Song
  • Hua Guan
Various Technological Processes

Abstract

Aluminium hydroxide/melamine–formaldehyde resin microcapsulated red phosphorus (MRP) was successfully prepared by two-step processes. The microcapsulated red phosphorus was characterized with Fouriertransform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Meanwhile its water absorption, thermostability were also determined. The results show that the MRP exhibited lower water absorption and higher thermostability compared with red phosphorus (RP) itself. Moreover, the thermal oxidative decomposition kinetics of MRP was investigated by TG/DTG and DTA in air atmosphere using non-isothermal experiments. The results show that the MRP’s decomposition consisted of two steps. And the apparent activation energies E α was determined by applying both the Ozawa–Flynn–Wall (OFW) and Kissinger, Akahira and Sunose (KAS) methods. It was found that the dependence of E α on α is complex. Both of the steps in this study fitted Sestak–Berggren (SB) model in overall reaction controlled kinetics and the corresponding model parameters, n, m, A were obtained. The simulated curves were fitted to experimental curves by plotting dα/dt vs. temperature at different heating rates.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kelly, R., subject: Solicitation Letter to the USMC for the RPProject Trans Atlantic Consultancy LLC, 27 February 2006.Google Scholar
  2. 2.
    Toxicity of Military Smokes and Obscurants, National Academy Press: Washington, 1996, pp. 98–126.Google Scholar
  3. 3.
    Liu, Y. and Wang, Q., Polym. Degrad. Stab., 2006, vol. 91, pp. 310–313.Google Scholar
  4. 4.
    Pecht, M. and Deng, Y.L., Microelectron Reliab, 2006; vol. 46, p.53.CrossRefGoogle Scholar
  5. 5.
    Núnez, L., Fraga, F., Rúnez, N.M., and Villanueva, M., Polymer, 2000, vol. 41, p. 4634.CrossRefGoogle Scholar
  6. 6.
    Budrugeac, P., Polym. Degrad. Stab., 2001, vol. 71, p.185.CrossRefGoogle Scholar
  7. 7.
    Chen, X.L., Yu, J., Guo, S.Y., and Luo, Z.J., Macromol. Sci. Part A: Pure and App. Chem., 2008, vol. 45, p.712.CrossRefGoogle Scholar
  8. 8.
    Petr., Budrugeac and Andrei, Cucos, Thermochim. Acta, 2013, vol. 565, pp. 241–252.CrossRefGoogle Scholar
  9. 9.
    Vyazovkin, S., Burnham, A.K., Criado, J.M., Pérez-Maqueda, L.A., Popescu, C., and Sbirrazzuoli, N., Thermochim. Acta, 2011, vol. 520, pp. 1–19.CrossRefGoogle Scholar
  10. 10.
    Málek, J., Thermochim. Acta, 1992, vol. 200, pp. 257–269.CrossRefGoogle Scholar
  11. 11.
    Vyazovkin, S., Chrissafis, K., Di Lorenzo, M.L., Koga, N., Pijolat, M., Roduit, B., Sbirrazzuoli, N., and Suñol, J.J., Thermochim. Acta, 2014, vol. 590, pp. 1–23.CrossRefGoogle Scholar
  12. 12.
    Vyazovkin, S., Burnham, A.K., Criado, J.M., Pérez-Maqueda, L.A., Popescu, C., and Sbirrazzuoli, N., Thermochim. Acta, 2011, vol. 520, pp. 1–19.CrossRefGoogle Scholar
  13. 13.
    Sbirrazzuoli, N., Vincent, L., and Bouillard, J., J. Therm. Anal. Calorim., 1999, vol. 56, pp. 783–792.CrossRefGoogle Scholar
  14. 14.
    Brown, M.E. and Gallagher, P.K., Handbook of Thermal Analysis and Calorimetry: Recent Advances, Techniques and Applications, 1st ed., Amsterdam: Elsevier, 2008.Google Scholar
  15. 15.
    Nam, J.D. and Seferis, J.C., J. Appl. Polym. Sci., 1993, vol. 50, pp. 1555–1564.CrossRefGoogle Scholar
  16. 16.
    Mállek, J., Thermochim. Acta, 1992, vol. 200, pp. 257–269.CrossRefGoogle Scholar
  17. 17.
    Lin, Y., Song, M., Stone, S.J. and Shaw, C.A., Thermochim. Acta, 2013, vol. 552, pp. 77–86.CrossRefGoogle Scholar
  18. 18.
    Vyazovkin, S., Burnham, A.K., Criado, J.M., Pérez-Maqueda, L.A., Popescu, C., and Sbirrazzuoli, N., Thermochim. Acta, 2011, vol. 520, pp. 1–19.CrossRefGoogle Scholar
  19. 19.
    Chieruzzi, M., Miliozzi, A., and Kenny, J.M., Composites. Part A, 2013, vol. 45, pp. 44–48.CrossRefGoogle Scholar
  20. 20.
    Abenojara, J., Encinasa, N., del Real, J.C., and Martínez, M.A., Thermochim. Acta, 2014, vol. 575, pp. 144–150.CrossRefGoogle Scholar
  21. 21.
    Kosar, V. and Gomzi, Z., Eur. Polym. J., 2004, vol. 40, pp. 2793–2802.CrossRefGoogle Scholar
  22. 22.
    Senum, G.I. and Yang, R.T., J. Therm. Anal. Calorim., 1977, vol. 11, pp. 445–447.CrossRefGoogle Scholar
  23. 23.
    Doyle, C.D., J. Appl. Polym. Sci., 1962, vol. 6, pp. 639–642.CrossRefGoogle Scholar
  24. 24.
    Ozawa, T., Bull. Chem. Soc. Jpn., 1965, vol. 38, pp. 1881–1886.CrossRefGoogle Scholar
  25. 25.
    Coats, A.W. and Redfern, J.P., Nature, 1964, vol. 201, pp. 68–69.CrossRefGoogle Scholar
  26. 26.
    Wu, Q., Lu, J.P., and Qu, B.J., Polym Int., 2003, vol. 52, pp. 13–26.Google Scholar
  27. 27.
    Svoboda, R. and Málek, J., J. Therm. Anal. Calorim., 2014, vol. 115, pp. 1961–1967.CrossRefGoogle Scholar
  28. 28.
    Brown, M.E., Maciejewski, M., Vyazovkin, S., Nomend, R., Sempere, J., Burnhame, A., Opfermann, J. Streyg, R., Andersong, H.L., Kemmlerg, A., Keuleersh, R., Janssensh, J., Desseynh, H.O., Chao-Rui Lii, Tong Tangi, Roduitj, B., Malekk, J., and Mitsuhashil, T., Thermochimica Acta, 2000, vol. 355, pp. 125–143.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Laboratory of Military Chemistry and PyrotechnicsSchool of Chemical EngineeringNanjingChina
  2. 2.University of Science and TechnologyNanjingChina

Personalised recommendations