Advertisement

Russian Journal of Applied Chemistry

, Volume 89, Issue 5, pp 772–779 | Cite as

Composite hydrogels based on polyacrylamide and cellulose: Synthesis and functional properties

  • A. L. Buyanov
  • I. V. Gofman
  • S. A. Bozhkova
  • N. N. Saprykina
  • A. Yu. Kochish
  • G. I. Netyl’ko
  • A. K. Khripunov
  • R. Yu. Smyslov
  • A. V. Afanas’ev
  • E. F. Panarin
Macromolecular Compounds and Polymeric Materials

Abstract

Biocompatible composite hydrogels based on polyacrylamide and reinforced with bacterial or vegetable cellulose were synthesized. In the mechanical characteristics and water content, these hydrogels are similar to knee joint cartilages with average rigidity level. The structure and chemical composition of the hydrogels after their residence for 45 days in laboratory animal joints were studied by scanning electron microscopy and energydispersive X-ray microanalysis. Prolonged contact of the hydrogels with bones results in formation of calcium phosphate spherulites similar in composition to hydroxyapatite.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sciaretta, F.V., Eur. Rev. Med. Pharmacol. Sci., 2013, vol. 17, no. 22, pp. 3031–3038.Google Scholar
  2. 2.
    Calvert, P., Adv. Mater., 2009, vol. 21, no. 7, pp. 743–756.CrossRefGoogle Scholar
  3. 3.
    Stammen, J.A., Williams, S., Ku, D.N., and Guldberg, R.E., Biomaterials, 2001, vol. 22, no. 8, pp. 799–806.CrossRefGoogle Scholar
  4. 4.
    Seal, B.L., Otero, T.C., and Panith, A., Mater. Sci. Eng., 2001, vol. 34, no. 4, pp. 147–230.CrossRefGoogle Scholar
  5. 5.
    Kobayashi, M. and Hyu, H.S., Materials, 2010, vol. 3, no. 4, pp. 2753–2771.CrossRefGoogle Scholar
  6. 6.
    Buyanov, A.L., Gofman, I.V., Khripunov, A.K., et al., Polym. Sci., Ser. A, 2013, vol. 55, no. 5, pp. 512–522.CrossRefGoogle Scholar
  7. 7.
    Buyanov, A.L., Gofman, I.V., Revelskaya, L.G., et al., J. Mech. Behav. Biomed. Mater., 2010, vol. 3, no. 1, pp. 102–111.CrossRefGoogle Scholar
  8. 8.
    Bozhkova, S.A., Buyanov, A.L., Kochish, A.Yu., et al., Morfologiya, 2016, vol. 149, no. 2, pp. 48–53.Google Scholar
  9. 9.
    Buyanov, A.L., Revel’skaya, L.G., Kuznetzov, Yu.P., and Khripunov, A.K., J. Appl. Polym. Sci., 2001, vol. 80, no. 9, pp. 1452–1460.CrossRefGoogle Scholar
  10. 10.
    Oloyede, A., Flachsmann, R., and Broom, N.D., Connect. Tissue Res., 1992, vol. 27, no. 4, pp. 211–224.CrossRefGoogle Scholar
  11. 11.
    Korhonen, R.K., Laasanen, M.S., Töyräs, J., et al., J. Biomech., 2002, vol. 35, no. 7, pp. 903–909.CrossRefGoogle Scholar
  12. 12.
    Shepherd, D.E.T. and Seedhom, B.B., Rheumatology, 1999, vol. 38, no. 2, pp. 124–132.CrossRefGoogle Scholar
  13. 13.
    Ker, R.F., J. Exp. Biol., 1999, vol. 202, no. 23, pp. 3315–3324.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. L. Buyanov
    • 1
  • I. V. Gofman
    • 1
  • S. A. Bozhkova
    • 2
  • N. N. Saprykina
    • 1
  • A. Yu. Kochish
    • 2
  • G. I. Netyl’ko
    • 2
  • A. K. Khripunov
    • 1
  • R. Yu. Smyslov
    • 1
  • A. V. Afanas’ev
    • 2
  • E. F. Panarin
    • 1
    • 3
  1. 1.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Vreden Russian Research Institute of Traumatology and OrthopedicsSt. PetersburgRussia
  3. 3.Peter the Great Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations