Advertisement

Russian Journal of Applied Chemistry

, Volume 89, Issue 4, pp 517–534 | Cite as

Magnetic nanoparticles (Fe3O4 & Co3O4) and their applications in urea biosensing

  • Akbar Ali
  • Mukhtar Ahmad
  • Majid Niaz Akhtar
  • Saleem Farooq Shaukat
  • Ghulam Mustafa
  • M. Atif
  • W. A. Farooq
Reviews

Abstract

Nanobiotechnology has opened a new and exciting opportunities for exploring urea biosensor based on magnetic nanoparticles (NPs) mainly Fe3O4 and Co3O4. These NPs have been extensively exploited to develop biosensors with stability, selectivity, reproducibility and fast response time. This review gives an overview of the development of urea biosensor based on Fe3O4 and Co3O4 for in vitro diagnostic applications along with significant improvements over the last few decades. Additionally, effort has been made to elaborate properties of magnetic nanoparticles (MNPs) in biosensing aspects. It also gives details of recent developments in hybrid nanobiocomposite based urea biosensor.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rick, W., Klinische Chemie und Mikroskopie, Berlin: Springer–Verlag, 1990, pp. 245–247.CrossRefGoogle Scholar
  2. 2.
    Wu, D., Ge, X., Huang, Y., Zhang, Z., and Ye, Q., Materials Letters, 2003, vol. 57, pp. 3549–3553.CrossRefGoogle Scholar
  3. 3.
    Hengelein, A., Chem. Rev., 1989, vol. 89, p. 1861.CrossRefGoogle Scholar
  4. 4.
    Chen Jianrong, Miao Yuqing, He Nongyue, Wu Xiaohua, and Li Sijiao, Nanotech. & Biosensors, 2004, vol. 22, no. 7, pp. 505–518.Google Scholar
  5. 5.
    Luo, X.L. Morrin, A., Killard, A.J., and Smyth, M.R., Electroanal., 2006, vol. 18, no. 4, pp. 319–326.CrossRefGoogle Scholar
  6. 6.
    Chen, J.R., Miao, Y.O., He, N.Y., Wu, X.H., and Li, S.J., Biotech. Adv., 2004, vol. 22(7), pp. 505–518.CrossRefGoogle Scholar
  7. 7.
    Khanna, V.K., Sensor Rev., 2008, vol. 28, pp. 39–45.CrossRefGoogle Scholar
  8. 8.
    Lue, J.T., Huang, W.C., and Ma, S.K., Phys. Rev. B, 1995, vol. 51, p. 14570.CrossRefGoogle Scholar
  9. 9.
    Cherkasov, F.G., Vitol, A.Ya., and Galyautdinov, M.F., JETP Lett., 1989, vol. 49, p. 431.Google Scholar
  10. 10.
    Huang, W.C. and Lue, J.T., Phys. Rev. B, 1999, vol. 59, p. 69.CrossRefGoogle Scholar
  11. 11.
    Wang, Z.L., ACS Nano, 2008, pp. 1987–1992.Google Scholar
  12. 12.
    Sophie, L., Delphine, F., Marc, P., Alain, R., Caroline, R., Elst, V., Muller, L., and Robert, N., Chem. Rev., 2008, vol. 108, no. 6, pp. 2064–2110.CrossRefGoogle Scholar
  13. 13.
    Buschow, K.H.G., Handbook of Magnetic Materials, Elsevier, 2006.Google Scholar
  14. 14.
    Polshettiwar, V. and Varma, R.S., Green. Chem., 2010, vol. 12, pp. 743–754.CrossRefGoogle Scholar
  15. 15.
    Menini, L., Pereira, M.C., Parreira, L.A., Fabris, J.D., and Gusevskaya, E.V., J. Catal., 2008, vol. 254, pp. 355–364.CrossRefGoogle Scholar
  16. 16.
    Jacinto, M.J., Santos, O.H.C.F., Jardim, R.F., Landers, R., and Rossi L.M., Appl. Catal. A, 2009, vol. 360, pp. 177–182.CrossRefGoogle Scholar
  17. 17.
    Qian, J. and Liu, S., Silica Nanoparticle as a Carrier for Biosensing School of Chemistry and Chemical Engineering, Southeast University, Nanjing, P.R., Ed., 2011.Google Scholar
  18. 18.
    Arias, J.L., Gallardo, V. Ruiz, M.A., and Delgdo, A.V., Eur. J. Pharm. Biopharm., 2008, vol. 69, pp. 54–63.CrossRefGoogle Scholar
  19. 19.
    Liao, M.H. and Chen, D.H., Biotech. Letters, 2001, vol. 23, pp. 1723–1727.CrossRefGoogle Scholar
  20. 20.
    Nandeo, M. and Bajpai, S.K., J. Mol. Cat. Bienzymatic, 2009, vol. 59, pp. 134–139.CrossRefGoogle Scholar
  21. 21.
    Lia, H.D., Chen, D., Yuan, L., Zheng, M., Zhu, Y.H., and Liu, X.M., Carbohyd. Polym., 2010, vol. 82, pp. 600–604.CrossRefGoogle Scholar
  22. 22.
    Kuroiwa, T., Noguchi, Y., Nakajima, M., Sato, S., Mukataka, S., and Ichikawa, S., J. Mol. Cat. Bienzymatic, 2008, vol. 60, pp. 135–140.Google Scholar
  23. 23.
    Heegaard, N.H.M., J. Chromatogr. A, 1999, vol. 853, pp. 189–195.CrossRefGoogle Scholar
  24. 24.
    Pan, C.L., Hu, B., Li, W., Sun, Y., Yeh, H., and Zeng, X.X., J. Mol. Cat. B: Enzymatic, 2009, vol. 61, pp. 208–215.CrossRefGoogle Scholar
  25. 25.
    Rossi, L.M., Quach, A.D., and Rosenzweig, Z., Anal & Bioanal. Chem., 2004, vol. 380, pp. 606–613.CrossRefGoogle Scholar
  26. 26.
    Zhu, H., Pan, J., Hu, B., Yu, H.I., and Xu, J.H., J. Mol. Cat. B: Enzymatic, vol. 61, pp. 174–179.Google Scholar
  27. 27.
    Mah, K.H., Lu, C.Y., Kuan, I.C., and Lee, S.I., Sci. & Technol. Vision, 2009, vol. 5, pp. 19–23.Google Scholar
  28. 28.
    Xie, W.L. and Ma, N., Energy & Fuels, 2009, vol. 23, pp. 1347–1353.CrossRefGoogle Scholar
  29. 29.
    Saiyed, Z.M., Sharma, S., Godawat, R., Telang, S.D., and Ramchand, C.N., J. Biotechnol., vol. 131, pp. 240–244.Google Scholar
  30. 30.
    Xu, X.Q., Deng, C.H., Yang, P.Y., and Zhang, X.M., J. Proteome Res., 2007, vol. 6, pp. 3849–3855.CrossRefGoogle Scholar
  31. 31.
    Frenkel, J. and Dorfman, J., Nature, 1930, vol. 126, pp. 274–275.CrossRefGoogle Scholar
  32. 32.
    Qu, L.H., Peng, Z.A., and Peng, X.G., Nano Letter, 2001, vol. 1(6), pp. 333–337.CrossRefGoogle Scholar
  33. 33.
    Hines, M.A. and Guyot, S.P. J. Phys. Chem., 1996, vol. 100, no. 2, pp. 468–471.CrossRefGoogle Scholar
  34. 34.
    Peng, X.G., Schlamp, M.C., Kadavanich, A.V., and Alivisatos, A.P., J. Am. Chem. Soc., 1997, vol. 119, no. 30, pp. 7019–7029.CrossRefGoogle Scholar
  35. 35.
    Dabbousi, B.O., Rodriguez, J., Mikulec, F.V., Heine, J.R., and Mattoussi, H., J. Phys. Chem. B, 1997, vol. 101, no. 46, pp. 9463–9475.CrossRefGoogle Scholar
  36. 36.
    Rockenberger, J., Scher, E.C., and Alivisatos, A.P., J. Am. Chem. Soc., 1997, vol. 121, no. 49, pp. 11595–11596.CrossRefGoogle Scholar
  37. 37.
    Smit, J. and Wijn, H.P.J., Ferrites, New York: John Wiley and Sons, 1959.Google Scholar
  38. 38.
    Terada, T., Nature, 1913, vol. XCI, pp. 135–136.CrossRefGoogle Scholar
  39. 39.
    Bragg, W.H., Nature, 1915, vol. 95, p. 561.CrossRefGoogle Scholar
  40. 40.
    Kramers, H.A., Physica, 1934, vol. 1, pp. 182–192.CrossRefGoogle Scholar
  41. 41.
    Neel, L., Compf. Rend., 1934, vol. 198, p. 1311.Google Scholar
  42. 42.
    Neel, L., Ann. Pkys. (Paris), 1948, vol. 3, p. 137.Google Scholar
  43. 43.
    Anderson, P.W., Phys. Rev., 1950, vol. 79, p. 350.CrossRefGoogle Scholar
  44. 44.
    Rudin, M. and Weissleder, R., Nat. Rev. Drug. Discov., 2003, vol. 2(2), pp. 123–131.CrossRefGoogle Scholar
  45. 45.
    Gu, H.W., Zheng, R.K., Zhang, X.X., and Xu, B., J. Am. Chem. Soc., 2004, vol. 126, no. 18, pp. 5664–5665.CrossRefGoogle Scholar
  46. 46.
    Goldman, A., Modern Fferrite Technology, New York: Springer, USA, 2006.Google Scholar
  47. 47.
    Chua, K.S. and Clin, J., Pathol., 1976, vol. 29, pp. 517–519.Google Scholar
  48. 48.
    Hadjiev, V.G., Lliev, M.N., and Vergilov, I.V., J. Phys. C: Solid State Phys., 1988, vol. 21, p. 199.CrossRefGoogle Scholar
  49. 49.
    Hirose, S., Hayashi, M., Tamura, N., and Kamidate, T., Anal. Chim. Acta, 1983, vol. 151, pp. 377–382.CrossRefGoogle Scholar
  50. 50.
    Konishi, Y. Kawamura, T. and Asai, S., Metall. Mater. Trans. B., vol. 25, 165 (1994)CrossRefGoogle Scholar
  51. 51.
    Lakshmi, B.B. Patrissi, C.J., and Martin, C.R., Chem. Mater., 1997, vol. 9, pp. 2544–2550.CrossRefGoogle Scholar
  52. 52.
    Le Loarer, J.L., Nussbaum, H., and Bortzmeyer, D., Application, 1998, vol. 44.Google Scholar
  53. 53.
    Liu, X.Q., Tao, S.W., and Shen, Y.S., Sens. Act. B Chem., 1997, vol. 40, p. 161.CrossRefGoogle Scholar
  54. 54.
    Chen, Y., Jin, L., and Xie, Y., J. Sol–Gel Sci. Technol., 1998, vol. 13, pp. 735–738.CrossRefGoogle Scholar
  55. 55.
    Gambhir, A., Kumar, A., Malhotra, B.D., Miksa, B., and Slomkowski, S., E-Polymers, 2002, vol. 052, pp. 1–9.Google Scholar
  56. 56.
    Gudiksen, M.S., Lauhon, L.J., Wang, J., Smith, D.C., and Lieber, C.M., Nature, 2002, vol. 415, pp. 617–620.CrossRefGoogle Scholar
  57. 57.
    Cox, R.M., Environ. Pollut., 2003, vol. 126, pp. 301–311.CrossRefGoogle Scholar
  58. 58.
    El-Safty, S.A., Ismail, A.A., Matsunaga, H., Nanjo, H., and Mizukami, F., J. Phys. Chem. C, 2008, vol. 112, pp. 4825–4835.CrossRefGoogle Scholar
  59. 59.
    Gu, J.M., Li, S.H., Wang, E.B., Sun, G.Y., Xu, R., and Zhang, H., J. Solid State Chem., 2009, vol. 182, p. 1265.CrossRefGoogle Scholar
  60. 60.
    Hsu, L.C., Li, Y.Y., Lo, C.G., Huang, C.W., and Chern, G., J. Phys. D: Appl. Phys., 2008, vol. 41, p. 185003.CrossRefGoogle Scholar
  61. 61.
    Choi, H.S., Liu, W., Misra, P., Tanaka, E., and Zimmer, J.P., Nat. Biotechnol., 2007, vol. 25, no. 10, pp. 1165–1170.CrossRefGoogle Scholar
  62. 62.
    Murray, C.B., Norris, D.J., and Bawendi, M.G., J. Am. Chem. Soc., 1993, vol. 115, no. 19, pp. 8706–8715.CrossRefGoogle Scholar
  63. 63.
    Ali, A., Tufail, M., and Wazir, Z., Patent 141680, 2013.Google Scholar
  64. 64.
    Melo, J.V.D., Cosnier, S., Mousty, C., and Martelet, C., J. Renault, Anal. Chem., 2002, vol. 74, p. 4037.CrossRefGoogle Scholar
  65. 65.
    Singhal, R.L., Gambhir, A., Pandey, M.K., Annapoorni, S., and Malhotra, B.D., Biosens. Bioelectron., vol. 17, p. 697.Google Scholar
  66. 66.
    Rajesh, V., Bisht, W., and Takashima, K., Biomater., 2005, vol. 26, p. 3683.CrossRefGoogle Scholar
  67. 67.
    Zhao, G., Xu, J.J., and Chen, H.Y., Electrochem. Commun., 2006, vol. 8, p. 148.CrossRefGoogle Scholar
  68. 68.
    Maaref, A., Barhoumi, H.M., Rammah, Martelet, C., Jaffrezic-Renault, N., Mousty, C., and Cosnier, S., Sens. Actuators B., Chem., vol. 123, p. 671.Google Scholar
  69. 69.
    Chin, J., Chem. Soc., 2009, vol. 56, p. 703.Google Scholar
  70. 70.
    Shi, W. and Ma, Z., Biosens. Bioelectron., 2010, vol. 26, p. 1098.CrossRefGoogle Scholar
  71. 71.
    Malhotra, B.D., Biosens. Bioelectron., 2008, vol. 24, p. 676.CrossRefGoogle Scholar
  72. 72.
    Kan, M.X., Wanga, X.J., and Zhang, H.M., Chin. Chem. Lett., 2011, vol. 22, p. 458.CrossRefGoogle Scholar
  73. 73.
    Kouassi, G.K., Irudayaraj, J., and McCarty, G.J., Nanobiotech., 2005, vol. 31, p. 1.CrossRefGoogle Scholar
  74. 74.
    Cao, D. and Hu, N., Biophys. Chem., 2006, vol. 121, p. 209.CrossRefGoogle Scholar
  75. 75.
    Kaushik, A., Solanki, P.R., Ansari, A.A., Ahmad, S., and Malhotra, B.D., Electrochem. Commun., 2008, vol. 10, p. 1364.CrossRefGoogle Scholar
  76. 76.
    Kaushik, A., Solanki, P.R., Ansari, A.A., Ahmad, S., and Malhotra, B.D., Electrochem. Commun., 2008, vol. 10, p. 1364.CrossRefGoogle Scholar
  77. 77.
    Park, J.I. and Cheon, J., J. Am. Chem. Soc., 2001, vol. 123, no. 24, pp. 5743–5746.CrossRefGoogle Scholar
  78. 78.
    Liu, C., Wu, X.W., Klemmer, T., Shukla, N., and Weller, D., Chem. Mater., 2005, vol. 17, no. 3, p. 62.CrossRefGoogle Scholar
  79. 79.
    Piao, Y., Kim, J., Bin, N.H., Kim, D., and Baek, J.S., Nat. Mater., vol. 7, no. 3, pp. 242–247.Google Scholar
  80. 80.
    Molday, R.S. and MacKenzie, D., J. Immunol. Methods, 1982, vol. 52, pp. 353–367.CrossRefGoogle Scholar
  81. 81.
    Sangregorio, C., Wiemann, J.K., O’Connor, C.J., and Rosenzweig, Z., J. Appl. Phys., 1999, vol. 85, pp. 5699–5701.CrossRefGoogle Scholar
  82. 82.
    Pardoe, H., Chua-Anusorn, W.St., Pierre, T.G., and Dobson, J., J. Magn. Magn. Mater., 2001, vol. 225, 41–46.CrossRefGoogle Scholar
  83. 83.
    Murthy, N., Robichaud, J.R., Tirrell, D.A., Stayton, P.S., and Hoffman, A.S., J. Controlled Release, 1999, vol. 61, vols. 1,2, pp. 137–143.CrossRefGoogle Scholar
  84. 84.
    Yi, D.K., Selvan, S.T., Lee, S.S., Papaefthymiou, G.C., and Kundaliya, D., J. Am. Chem. Soc., 2005, vol. 127, no. 14, pp. 4990–4991.CrossRefGoogle Scholar
  85. 85.
    Sun, E.Y., Josephson, L., and Weissleder, R., Mol. Imaging., 2006, vol. 5, no. 2, pp. 122–128.Google Scholar
  86. 86.
    Kim, J., Lee, J., Lee, Y., and Youn, J.K., J. Am. Chem. Soc., 2006, vol. 128, pp. 688–689.CrossRefGoogle Scholar
  87. 87.
    Yi, D.K., Lee, S.S., and Ying, J.Y., Chem. Mater., 2006, vol. 18, no. 3, pp. 614–619.CrossRefGoogle Scholar
  88. 88.
    Collings, A.F. and Caruso, F., Reports on Progress in Physics., 1997, vol. 60, pp. 1397–1445.CrossRefGoogle Scholar
  89. 89.
    Solanki, P.R., Kaushik, A., Agrawal, V.V., and Malhotra, B.D., NPG Asia Materials, 2011, vol. 3, pp. 17–24.CrossRefGoogle Scholar
  90. 90.
    Eggins, B.R., Chemical Sensors and Biosensors, Chichester: John Wiley &Sons, LTD, 2004.Google Scholar
  91. 91.
    Zaho, Z. and Jiang, H., Biosensors, Bukovar: Intech., Croatia, 2010.Google Scholar
  92. 92.
    Luo, X.L., Morrin, A., and Killard, A.J., Electroanal., 2009, vol. 18, pp. 320–325.Google Scholar
  93. 93.
    Zhang, X.O., Guo, Q., and Cui, D., Sensors, 2009, vol. 9, pp. 1033–1053.CrossRefGoogle Scholar
  94. 94.
    Clark, L.C. and Lyons, C., Annals of the New York Academy of Sciences, 1962, vol. 102, pp. 29–45.CrossRefGoogle Scholar
  95. 95.
    Guilbault, G.G., Smith, R.K., and Montalvo, J.G., Anal. Chem., 1969, vol. 41, p. 600.CrossRefGoogle Scholar
  96. 96.
    Verpoorte, E., Lab. Chip., 2003, vol. 3, p. 60.CrossRefGoogle Scholar
  97. 97.
    Medintz, I.L., Uyeda, H.T., Goldman, E.R., and Matoussi, H., Nature Mater., 2005, vol. 4, pp. 435–446.CrossRefGoogle Scholar
  98. 98.
    Luo, X.L., Morrin, A., Killard, A.J., and Smith, M.R., Electroanal., 2006, vol. 18, pp. 319–326.CrossRefGoogle Scholar
  99. 99.
    Kaushik, A., Solanki, P.R., Ansari, A.A., Ahmad, S., and Malhotra, B.D., Electrochem. Commun., 2008, vol. 10, p. 1364.CrossRefGoogle Scholar
  100. 100.
    Kaushi, Khan, R., Kaushi, A., Solanki, P.R., Ansari, A.A., Pandey, M.K., and Malhotra, B.D., Biosens. Bioelectron., 2008, vol. 24, p. 676.CrossRefGoogle Scholar
  101. 101.
    Ajayan, P.M., Schadler, L.S., and Braun, P.V., Nanocomposite Science and Technology, New York: Wiley, 2003.CrossRefGoogle Scholar
  102. 102.
    Kamigaito, O., J. Jpn. Soc., 1991, vol. 38, p. 315–321.Google Scholar
  103. 103.
    Jose-Yacaman, M., Rendon, L., Arenas, J., and Serra, Puche, M.C., Science, 1996, vol. 273, no. 5272, pp. 223–225.CrossRefGoogle Scholar
  104. 104.
    Manias, E., Nature Materials, 2007, vol. 6, no. 1.Google Scholar
  105. 105.
    Pankhurst, Q.A., Connolly, J., Jones, S.K., and Dobson, J., J. Physics-London-D Applied Physics., 2003, vol. 36, pp. 167–181.CrossRefGoogle Scholar
  106. 106.
    Solanki, P.R., Kaushik, A., Anees, A.A., Sumana, G., and Malhotra, B.D., Appl. Phys. Lett., 2008, vol. 93, 163903.CrossRefGoogle Scholar
  107. 107.
    Khan, R. Kaushik, A. Solanki, P.R. Ansari, A.A. Pandey, M.K. and Malhotra, B.D., Anal. Chimi. Acta, 2008, vol. 616, p. 207.CrossRefGoogle Scholar
  108. 108.
    Caruso, F., Adv. Mater., 2001, vol. 13, pp. 11–20.CrossRefGoogle Scholar
  109. 109.
    Nabok, A., Organic and Inorganic Nanostructures, Artech House, 2005.Google Scholar
  110. 110.
    Mamalis, A.G., J. Mater. Process. Technol., 2007, vol. 181, p. 52.CrossRefGoogle Scholar
  111. 111.
    Pandey, P., Datta, M., and Malhotra, B.D., Anal. Lett., 2007, vol. 41, p. 159.CrossRefGoogle Scholar
  112. 112.
    Pokropivny, V.V. and Skorokhod, V.V., Physica E., 2008, 2008, vol. 40, p. 2521.Google Scholar
  113. 113.
    Xu, Y. and Wang, E., Electrochim. Acta, 2012, vol. 84, p. 62.CrossRefGoogle Scholar
  114. 114.
    Dai, Z., Liu, S., Ju, H., and Chen, H., Biosens. Bioelectron., 2004, vol. 19, p. 861.CrossRefGoogle Scholar
  115. 115.
    Wu, J., Tang, J., Dai, Z.F. Yan, H.Ju, and Murr, N.E., Biosens. Bioelectron., 2006, vol. 22, p. 102.CrossRefGoogle Scholar
  116. 116.
    Jia, H., Zhu, G., and Wang, P., Biotechnol. Bioeng., 2003, vol. 84, p. 406.CrossRefGoogle Scholar
  117. 117.
    Pandey, P., Singh, S.P., Arya, S.K., Gupta, V., Datta, M., Singh, S., and Malhotra, B.D., Langmuir, 2007, vol. 23, p. 3333.CrossRefGoogle Scholar
  118. 118.
    Pendry, J., Science, vol. 285, p. 1687.Google Scholar
  119. 119.
    Bakker, E., Anal. Chem., vol. 76, 2004, p. 3285.CrossRefGoogle Scholar
  120. 120.
    Luong, J.H.T., Male, K.B., and Glennon, J.D., Biotechnol. Adv., 2008, vol. 26, p. 492.CrossRefGoogle Scholar
  121. 121.
    Prabhakar, N., Solanki, P.R., Kaushik, A., Pandey, M.K., and Malhotra, B.D., Electroanal., 2010, vol. 22, p. 2672.CrossRefGoogle Scholar
  122. 122.
    Uehara, H., Kakiage, M., Sekiya, M., Sakuma, D., Yamonobe, T., Takano, N., Barraud, A., Meurville, E., and Ryser, P., ACS Nano, 2009, no. 3, p. 924.CrossRefGoogle Scholar
  123. 123.
    Krajewska, B., Enzyme Microb. Technol., 2004, vol. 35, p. 126.CrossRefGoogle Scholar
  124. 124.
    Li, J., Liu, Q., Liu, Y., Liu, S., and Yao, S., Anal. Biochem., 2005, vol. 346, p. 107.CrossRefGoogle Scholar
  125. 125.
    Macquarrie, D.J. and Hardy, J.J.E., Ind. Eng. Chem. Res., 2005, vol. 44, p. 8499.CrossRefGoogle Scholar
  126. 126.
    Odaci, D., Timur, S., and Telefoncu, A., Sens. Actuat. B, 2008, vol. 134, p. 89.CrossRefGoogle Scholar
  127. 127.
    Yi, H., Wu, L.-Q., Bentley, W.E., Ghodssi, R., Rubloff, G.W., Culver, J.N., and Payne, G.F., Biomacromolecules, 2005, vol. 6, 2881..CrossRefGoogle Scholar
  128. 128.
    Magalhгes, J.M.C.S. and Machado, A.A.S.C., Talanta, 1998, vol. 47, p. 183.CrossRefGoogle Scholar
  129. 129.
    Cruz, J., Kawasaki, M., and Gorski, W., Anal. Chem., 2000, vol. 72, p. 680.CrossRefGoogle Scholar
  130. 130.
    Miao, Y. and Tan, S.N., Analyst, 2000, vol. 125, p. 1591.CrossRefGoogle Scholar
  131. 131.
    Xu, C., Cai, H., He, P., and Fang, Y., Analyst, 2001, vol. 126, p. 62.CrossRefGoogle Scholar
  132. 132.
    Kaushik, A., Khan, R., Solanki, P.R., Pandey, P., Alam, J., Ahmad, S., and Malhotra, B.D., Biosens. Bioelectron., 2008, vol. 24, p. 676.CrossRefGoogle Scholar
  133. 133.
    Kaushik, A., Solanki, P.R., Pandey, M.K., Ahmad, S., and Malhotra, B.D., Appl. Phys. Lett., 2009, vol. 95, pp. 173703.CrossRefGoogle Scholar
  134. 134.
    Kaushik, A., Solanki, P.R., Pandey, M.K., Kaneto, K., Ahmad, S., and Malhotra, B.D., Thin Solid Films, 2010, vol. 519, p. 1160.CrossRefGoogle Scholar
  135. 135.
    Kaushik, A., Solanki, P.R., Sood, K.N., Ahmad, S., and Malhotra, B.D., Electrochem. Commun., 2009, vol. 11, p. 1919.CrossRefGoogle Scholar
  136. 136.
    Chen, L. and Gorski, W., Anal. Chem., 2001, vol. 73, p. 2862.CrossRefGoogle Scholar
  137. 137.
    Zhou, G. -J., Wang, G., Xu, J. -J., and Chen, H.-Y., Sens. Actuat. B, vol. 81, p. 334.Google Scholar
  138. 138.
    Wei, X., Cruz, J., and Gorski, W., Anal. Chem., 2002, vol. 74, p. 5039.CrossRefGoogle Scholar
  139. 139.
    Yang, M., Yang, Y.B., Liu, G., and Shen, R.Yu., Sens. Actuat. B, 2004, vol. 101, p. 269.CrossRefGoogle Scholar
  140. 140.
    Zhao, C., Meng, Y., Shao, C., Wan, L. and Jiao, K., Electroanal., 2008, vol. 20, no. 520.Google Scholar
  141. 141.
    Oliveira, I.R.W.Z. de and Vieira, I.C., Enzyme Microb. Technol., 2006, vol. 38, p. 449.CrossRefGoogle Scholar
  142. 142.
    Mandong, G., Yanqing, L.G., Hongxia, W., Xiaoqin, L., and Lifang, F., Bioelectrochem., 2007, vol. 70, p. 245.CrossRefGoogle Scholar
  143. 143.
    Lin, J., Yan, F., Hu, X., and Ju, H., J. Immunol. Methods, 2004, vol. 291, p. 165.CrossRefGoogle Scholar
  144. 144.
    Mishra, S.B., Mishra, A.K., and Tiwari, A., in Biosensor Nanomaterials, Songjun Li, Jagdish Singh, He Li, and Ipsita, A. Banerjee, Eds., Wiley-VCH Verlag GmbH & Co., 2011, pp. 237–246.Google Scholar
  145. 145.
    Tsai, Y.-C., Chen, S.-Y., and Lee, C.-A., Sens. Actuat. B, 2008, vol. 135, p. 96.CrossRefGoogle Scholar
  146. 146.
    Khan, R. and Dhayal, M., Electrochem. Commun., 2008, vol. 10, p. 263.CrossRefGoogle Scholar
  147. 147.
    Khan, R. and Dhayal, M., Electrochem. Commun., 2008, vol. 10, p. 492.CrossRefGoogle Scholar
  148. 148.
    Lin, J.C., He, Y., Zhao, J., and Zhang, S., Sens. Actuat. B, 2009, vol. 137, p. 768.CrossRefGoogle Scholar
  149. 149.
    Li, W., Yuan, R., Chai, Y., Zhou, L., Chen, S., and Li, N., J. Biochem. Bioph. Methods, 2008, vol. 70, p. 830.CrossRefGoogle Scholar
  150. 150.
    Chen, Q., Ai, S., Zhu, X., Yin, H., Ma, Q., and Qiu, Y., Biosens. Bioelectron., 2009, vol. 24, p. 2991.CrossRefGoogle Scholar
  151. 151.
    Odaci, D., Timur, S., and Telefoncu, A., Bioelectrochem., 2009, vol. 75, p. 77.CrossRefGoogle Scholar
  152. 152.
    Tan, X.-C., Tian, Y.-X., Cai, P.-X., and Zou, X.-Y., Anal. Bioanal. Chem., 2005, vol. 381, p. 500.CrossRefGoogle Scholar
  153. 153.
    Kang, X., Mai, Z., Zou, X., Cai, P., and Mo, J., Talanta, 2008, vol. 74, p. 879.CrossRefGoogle Scholar
  154. 154.
    Solanki, P.R., Kaushik, A., Ansari, A.A., Tiwari, A., and Malhotra, B.D., Sens. Actuat. B, 2009, vol. 137. p. 727.CrossRefGoogle Scholar
  155. 155.
    Malhotra, B.D. and Kaushik, A., Thin Solid Films, 2009, vol. 518, p. 614.CrossRefGoogle Scholar
  156. 156.
    Singh, J., Kalita, P., Singh, M.K., and Malhotra, B.D., Appl. Phys. Lett., 2011, vol. 98, p. 123702.CrossRefGoogle Scholar
  157. 157.
    Feng, K.-J., Yang, Y.-H., Wang, Z.-J., Jiang, J.-H., Shen, G.-L., and Yu, R.-Q., Talanta, 2006, vol. 70, p. 561.CrossRefGoogle Scholar
  158. 158.
    Singh, R., Verma, R., Kaushik, A., Sumana, G., Sood, S., Gupta, R.K., and Malhotra, B.D., Biosens. Bioelectron., 2011, vol. 26, pp. 2967.CrossRefGoogle Scholar
  159. 159.
    Kaushik, A. Solanki, P.R. Ansari, A.A. Sumana, G. Ahmad, S., and Malhotra, B.D., Sensors & Actuators B, 2009, vol. 138, pp. 572–580.CrossRefGoogle Scholar
  160. 160.
    Wang, S.F., Tan, Y.M., Zhao, D.M., and Liu, G.D., Biosens. Bioelectron., 2008, vol. 23, 1781.CrossRefGoogle Scholar
  161. 161.
    Wang, S.F. and Tan, Y.M., Anal. Bioanal. Chem., 2007, vol. 387, p. 703.CrossRefGoogle Scholar
  162. 162.
    Mascini, M. Fortunati, S. Moscone, D. Palleschi, G., and Massi-Benedetti, M.P., Clin. Chem., 1985, vol. 31, pp. 451–453.Google Scholar
  163. 163.
    Shichiri, M. Asakawa, N. Yamasaki, Y. Kawamori, R. and Abe, H., Diabetes. Care., 1986, vol. 9, p. 298.CrossRefGoogle Scholar
  164. 164.
    Yang, L., Ren, X., Tang, F., and Zhang, L., Biosen. Bioelect., 2009, vol. 25, pp. 889–895.CrossRefGoogle Scholar
  165. 165.
    Rossi, L.M., Quach, A.D., and Rosenzweig, Z., Anal. Bioanal. Chem., vol. 380, pp. 606-613.Google Scholar
  166. 166.
    Kaushi, A., Solanki, P.R., Kaneto, K., Kim, G.C., Ahmad, S., and Malhotra, B.D., Electroanal., 2010, vol. 22, no. 10, pp. 1045–1055.CrossRefGoogle Scholar
  167. 167.
    Salimi, A., Hallaj, R., and Soltanian, S., Electroanal., 2009, vol. 21, no. 24, pp. 2693–2700.CrossRefGoogle Scholar
  168. 168.
    Zhang, Z., Wang, X., and Yang, X., Analyst., vol. 136, pp. 4960–4965.Google Scholar
  169. 169.
    Summer, J.B., J. Biol. Chem., 1926, vol. 69, pp. 435–441.Google Scholar
  170. 170.
    Wöhler, F., Annalen der Physik und Chemie, 1828, vol. 88, pp. 253–256.CrossRefGoogle Scholar
  171. 171.
    Hof, G., Vervoorn, M.D., Lenaers, J., and Tamminga, S., J. Dairy Sci., 1997, vol. 80, p. 3333.CrossRefGoogle Scholar
  172. 172.
    Eggenstein, C., Borchardt, M., Diekmann, C., Grundig, B., Dumschat, C., Cammann, K., Knoll, M., and Spener, F.A., Bioelectron. 1999, vol. 14, p. 33.CrossRefGoogle Scholar
  173. 173.
    Karakus, E., Pekyardýmc, S., and Kilic, E., Artif Cells Blood Substit Immobil. Biotechnol., 2005, vol. 33, no. 3, p. 329-341.CrossRefGoogle Scholar
  174. 174.
    Leema, M.J.R., Fernandes, S.M.V., and Rangel, A.O.S.S., J. Agric. Food. Chem., 2004, vol. 52, p. 6887.CrossRefGoogle Scholar
  175. 175.
    Basic Skills in Interpreting Laboratory Data, Traub, S.L., Ed., Bethesda, MD: American Society of Health-System Pharmacists, 1996.Google Scholar
  176. 176.
    Jdanova, A.S., Poyard, S., Soldatkin, A.P., Jaffrezic-Renault, N., and Martelet, C., Anal. Chim. Acta, vol. 321, p. 35.Google Scholar
  177. 177.
    Sangodkar, H., Sukeerthi, S., Srinivasa, R.S., Lal, R., and Contractor, A.Q., Anal. Chem., 1996, vol. 68, p. 779.CrossRefGoogle Scholar
  178. 178.
    Adams, R.E. and Carr, P.W., Anal. Chem., 1978, vol. 50, p. 944.CrossRefGoogle Scholar
  179. 179.
    Adeloju, S.B., Shaw, S.J., and Wallace, G.G., Anal. Chim. Acta., 1993, vol. 281, p. 611.CrossRefGoogle Scholar
  180. 180.
    Adeloju, S.B., Shaw, S.J., and Wallace, G.G., Anal. Chim. Acta., 1993, vol. 281, p. 621.CrossRefGoogle Scholar
  181. 181.
    Esteve, M.F. and Alegret, S., J. Chem. Educ., vol. 71, p. A67.Google Scholar
  182. 182.
    Liu, D.Ge, Cheng, K., Nie, K., and Yao, S., Anal. Chim. Acta., 1995, vol. 307, p. 61.CrossRefGoogle Scholar
  183. 183.
    Mascini, M., Sens. Actuators B, 1995, vol. 29, p. 121.CrossRefGoogle Scholar
  184. 184.
    Xie, X., Suleiman, A.A. and Guilbault, G.G., Talanta, vol. 38, p. 1197.Google Scholar
  185. 185.
    Liu, D., Meyerhoff, M.E., Goldberg, H.D., and Brown, R.B., Anal. Chim. Acta, vol. 274, p. 37.Google Scholar
  186. 186.
    Chen, K., Liu, D., Nie, L., and Yao, S., Talanta, 1994, vol. 41, p. 2195.CrossRefGoogle Scholar
  187. 187.
    Adelju, S.B., Shaw, S.J., and Wallace, G.G., Anal. Chim. Acta, 1996, vol. 323, p. 107.CrossRefGoogle Scholar
  188. 188.
    Rebriiev, A.V. and Starodub N.F., Electroanal., 2004, vol. 16, p. 1891.CrossRefGoogle Scholar
  189. 189.
    Zhang, F., Wang, X., Ai, S., Sun, Z., Wan, Q., Zhu, Z., Xian, Y., and Yamamoto, K., Anal. Chim. Acta, 2004, vol. 519, pp. 155–160.CrossRefGoogle Scholar
  190. 190.
    Zhang, F.F., Wang, X.L., Li, C.X., Li, X.H., Wan, Q., Xian, Y.Z., Jin, L.T., and Yamamoto, K., Anal. Bioanal. Chem., vol. 382, pp. 1368–1373.Google Scholar
  191. 191.
    Liu, A., Wei, M., Honma, I., and Zhou, H., Adv. Funct. Mater., vol. 16, pp. 371–376, 2006.CrossRefGoogle Scholar
  192. 192.
    Hubalek, J., Hradecky, J., Adam, V., Krystofova, O., Huska, D., Masarik, M., Trnkova, L., Horna, A., Klosova, K., Adamek, M., Zehnalek, J., and Kizek, R., Sensors, 2007, vol. 7, pp. 1238–1255.CrossRefGoogle Scholar
  193. 193.
    Ansari, A.A., Sumana, G., Pandey, M.K., and Malhotra, B.D., J. Mat. Res., vol. 24, no. 5, pp. 1667–1673.Google Scholar
  194. 194.
    Kaushik, A., Solanki, P.R., Ansari, A.A., Sumana, G., Ahmad, S., and Malhotra, B.D., Sensors & Actuators B. Chemical, 2009, vol. 138, pp. 572–580.CrossRefGoogle Scholar
  195. 195.
    Ali, S.U., Ibupoto, Z.H., Salman, S., Nur, O., and Willander, M., Sensor & Actuators. B. Chemical, 2011, vol. 160, pp. 1637–1643.CrossRefGoogle Scholar
  196. 196.
    Ali, A., Israr, M.Q., and Willander, M., J. Phys. Conf. Ser., 2013, vol. 414, 012024.CrossRefGoogle Scholar
  197. 197.
    Singh, S.P., Arya, S.K., Pandey, P., Malhotra, B.D., Shah, S., and Sreenivas, V.G., Appl. Phys. Let., 2007, vol. 91, 063901.CrossRefGoogle Scholar
  198. 198.
    Solanki, P.R. Kaushik, A. Ansari, A.A., and Malhotra, B.D., Appl. Phy. Let., vol. 94, 143901.Google Scholar
  199. 199.
    Khan, R. Kaushik, A. Solanki, P.R. Ansari, A.A. Pandey, M.K., and Malhotra, B.D., Annal. Chem. Acta, vol. 616, p. 207.Google Scholar
  200. 200.
    Ansari, A.A., Solanki, P.R., Kaushik, A., and Malhotra, B.D., Electroanal., 2009, vol. 21, p. 965.CrossRefGoogle Scholar
  201. 201.
    Ansari, A.A. Kaushik, A. Solanki, P.R. and Malhotra, B.D., Electrchem. Commun., 2008, vol. 10, p. 1246.CrossRefGoogle Scholar
  202. 202.
    Malhotra, B.D. and Kaushik, A., Thin Solid Films, vol. 518, p. 614.Google Scholar
  203. 203.
    Aravamudhan, S. Kumar, A. Mohapatra, S. and Bhansali, S., Biosens. Bioelectron., 2007, vol. 22, p. 2289.CrossRefGoogle Scholar
  204. 204.
    Kouassi, G.K. Irudayaraj, J. and McCarty, G.J. Nanobiotechnol., 2005, vol. 3, no. 1, p. 1.CrossRefGoogle Scholar
  205. 205.
    Kaushik, A., Solanki, P.R., Kaneto, K., Kim, C.G., Ahmad, S., and Malhotra, B.D., Electroanal., 2010, vol. 10, pp. 1045–1055.CrossRefGoogle Scholar
  206. 206.
    Israr, M.Q. Sadaf, J.R. Asif, M.H. Nur, O. Willander, M. and Danielsson, B., Thin. Solid. Films, 2010, vol. 519, pp. 1106–1109.CrossRefGoogle Scholar
  207. 207.
    Ali, S.U., Alvi, N.H., Ibupoto, Z.H., Nur, O., Willander, M., and Danielsson, B., Sensors and Actuators. B, Chemical, 2011, vol. 152, no. 2, pp. 241–247.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Akbar Ali
    • 1
  • Mukhtar Ahmad
    • 1
  • Majid Niaz Akhtar
    • 1
  • Saleem Farooq Shaukat
    • 1
  • Ghulam Mustafa
    • 2
  • M. Atif
    • 3
    • 4
  • W. A. Farooq
    • 3
  1. 1.Department of PhysicsCOMSATS Institute of Information TechnologyLahorePakistan
  2. 2.Department of PhysicsBahauddin Zakariya UniversityMultanPakistan
  3. 3.Department of Physics and Astronomy, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  4. 4.National Institute of Laser and OptronicsNilore, IslamabadPakistan

Personalised recommendations