Russian Journal of Applied Chemistry

, Volume 89, Issue 3, pp 400–405 | Cite as

Synthesis of highly porous zinc–carbon composites based on modified pine wood

  • S. I. Tsyganova
  • O. Yu. Fetisova
  • G. N. Bondarenko
  • E. V. Mazurova
  • N. V. Chesnokov
Sorption and Ion Exchange Processes


Highly porous materials containing zinc oxide were prepared form modified pine wood. The growth dynamics of zinc oxide microcrystallites in the course of carbonization of pine sawdust mixed with ZnCl2 was studied. The hexagonal wurtzite-type ZnO phase is formed at 400°С and is broken down at approximately 800°С. The synthesized composite material has a high specific surface area, up to 1900 m2 g–1. The relationships of the porous structure formation in the composite in relation to the temperature and subsequent treatment with water were revealed. Opening of the porous structure of the composite in the course of carbonization of modified pine sawdust is associated with the formation of crystal-like phases of carbon and ZnO.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marsh, H. and Rodriguez-Reinoso, F., Activated Carbon, Elsevier, 2006.Google Scholar
  2. 2.
    Fenelonov, V.B., Vvedenie v fizicheskuyu khimiyu formirovaniya supramolekulyarnoi struktury adsorbentov i katalizatorov (Introduction to Physical Chemistry of Formation of Supramolecular Structure of Adsorbents and Catalysts), Novosibirsk: Sibirskoe Otdel. Ross. Akad. Nauk, 2002.Google Scholar
  3. 3.
    Munoz-Gonzalez, Y., Arriagada-Acuna, R., Soto-Garrido, G., and Garcia-Lovera, R., J. Chem. Technol. Biotechnol., 2009, vol. 84, pp. 39–47.CrossRefGoogle Scholar
  4. 4.
    Tsyganova, S.I., Bondarenko, G.N., Korol’kova, I.V., and Kargin, V.F., Russ. J. Appl. Chem., 2011, vol. 84, no. 12, pp. 2131–2136.CrossRefGoogle Scholar
  5. 5.
    Derbyshire, F., Jagtoyen, M., Andrews, R., et al., Chemistry and Physics of Carbon, Radovic, L.R., Ed., New York: Dekker, 2001, vol. 27, pp. 1–66.Google Scholar
  6. 6.
    Swarnalatha, S., Ganesh Kumar, A., and Sekaran, G., J. Porous Mater., 2009, vol. 16, pp. 239–245.CrossRefGoogle Scholar
  7. 7.
    Kolodziejczak-Radzimska, A. and Jesionowski, T., Materials, 2014, vol. 7, pp. 2833–2881.CrossRefGoogle Scholar
  8. 8.
    Chang, S.-Y., Yang, N.-H., and Huang, Y.-C., J. Electrochem. Soc., 2009, vol. 156, no. 11, pp. 200–204.CrossRefGoogle Scholar
  9. 9.
    Troshyn, A.V., Kovalenko, A.A., Dorofeev, S.G., and Baranov, A.N., Inorg. Mater., 2012, vol. 48, no. 7, pp. 709–715.CrossRefGoogle Scholar
  10. 10.
    Dwivedi, C. and Dutta, V., Adv. Nat. Sci.: Nanosci. Nanotechnol., 2012, vol. 3, pp. 1–8.Google Scholar
  11. 11.
    Sui, M., Gong, P., and Gu, X., Front. Optoelectron., 2013, vol. 6, no. 4, pp. 386–412.CrossRefGoogle Scholar
  12. 12.
    Kumar, M.A., Jung, S., and Ji, T., Sensors, 2011, vol. 11, pp. 5087–5111.CrossRefGoogle Scholar
  13. 13.
    Kuznetsov, B.N., Chesnokov, N.V., Tsyganova, S.I., et al., Russ. J. Appl. Chem., 2015, vol. 88, no. 3, pp. 442–448.CrossRefGoogle Scholar
  14. 14.
    Lyanguzov, N.V., Stupko, M.Yu., Nikolaev, A.L., and Kaidashev, E.M., Inzh. Vestn. Dona, 2012, vol. 19, no. 1, pp. 1–4.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • S. I. Tsyganova
    • 1
  • O. Yu. Fetisova
    • 1
  • G. N. Bondarenko
    • 1
  • E. V. Mazurova
    • 1
  • N. V. Chesnokov
    • 1
  1. 1.Institute of Chemistry and Chemical Technology, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia

Personalised recommendations