Russian Journal of Applied Chemistry

, Volume 89, Issue 1, pp 56–62 | Cite as

Effect of concentration and temperature factors on operation stability of Li–S n –LiN(CF3SO2)2 electrochemical system

  • N. I. Globa
  • V. A. Sirosh
  • E. D. Pershina
Various Technologcal Processes


The results of the electrochemical study of the Li–S n system in the electrolytes consisted of LiN(CF3SO2)2 and tetraethylene glycol dimethyl ether in relation to the LiN(CF3SO2)2 concentration, temperature, and storage conditions are presented. The optimal concentrations of the salt component in salt-solvates were determined. These concentrations make it possible to obtain high stable values of the specific capacity in cycling and charge storage at room and elevated temperatures. It was shown that the operation stability of the electrochemical system Li–S n –LiN(CF3SO2)2 in salt-solvate solutions depends on solubility of the formed lithium disulfide, ratio composition of electrolyte and temperature.


Electrochemical System Lithium Salt Sulfur Electrode Reversible Redox Reaction Polyester Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Evers, S. and Nazar, L.F., Acc. Chem. Res., 2012, vol. 46, no. 5, pp. 1135–1143.CrossRefGoogle Scholar
  2. 2.
    Manthiram, A., Fu, Y., and Su, Y.S., Acc. Chem. Res., 2012, vol. 46, no. 5, pp. 1125–1134.CrossRefGoogle Scholar
  3. 3.
    Nazar, L.F., Cuisinier, M., and Pang, Q., MRS Bull., 2014, vol. 39, no. 5, pp. 436–442.CrossRefGoogle Scholar
  4. 4.
    Scheers, J., Fantini, S., and Johanson, P., J. Power Sources, 2014, vol. 255, pp. 204–218.CrossRefGoogle Scholar
  5. 5.
    Cheon, S.-E., J. Electrochem. Soc., 2003, vol. 150, no. 6, pp. A796–A799.CrossRefGoogle Scholar
  6. 6.
    Kolosnitsyn, V.S., Kuzmina, E.V., and Mochalov, S.E., ECS Trans., 2009, vol. 16, no. 29, pp. 173–180.CrossRefGoogle Scholar
  7. 7.
    Ueno, K., Park, J.-W., Yamazaki, A., Mandai, T., et al., J. Phys. Chem., 2013, vol. 117, no. 40, pp. 20509–20616.Google Scholar
  8. 8.
    Shim, J., Striebel, K.A., and Cairns, E.J., J. Electrochem. Soc., 002, vol. 149, no. 10, pp. A132–A135.Google Scholar
  9. 9.
    Barghamadi, M. and Best, A., Energy Environ. Sci., 2014, vol. 7, pp. 3902–3920CrossRefGoogle Scholar
  10. 10.
    Zhang, S.S. and Read, J.A., J. Power Sources, 2012, vol. 200, pp. 77–82.CrossRefGoogle Scholar
  11. 11.
    Dokko Kaoru, Tachikawa Naoki, Yamauchi Kento, et al., J. Electrochem. Soc., 2013, vol. 160, no. 8, pp. A1304–A1310.CrossRefGoogle Scholar
  12. 12.
    Azimi, N., Xue, Z., Rago, N.D., et al., J. Electrochem. Soc., 2015, vol. 162, no. 1, pp. A64–A68.CrossRefGoogle Scholar
  13. 13.
    Gadzhiev, S.M., Guseinov, R.M., and Prisyazhnyi, V.D., Ukr. Khim. Zh., 1991, vol. 57, no. 1, pp. 47–51.Google Scholar
  14. 14.
    Henderson, W.A., J. Phys. Chem. B, 2006, vol. 110, pp. 13177–13183.CrossRefGoogle Scholar
  15. 15.
    Srinivasan, S., Fuel Cells: from Fundamentals to Applications, New York: Springer Science & Business Media, 2006.Google Scholar
  16. 16.
    Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: John Wiley & Sons, Inc., 2000, 2nd. ed.Google Scholar
  17. 17.
    Rauch, R.D, Abraham, K.M., and Pearson, S.B., J. Electrochem. Soc., 1979, vol. 126, no. 4, pp. 523–527.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Interagency Department of Electrochemical Power EngineeringNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations